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PREFACE. 

The  object  of  this  little  book  is  to  give  a  more  or  less 
complete  account  of  the  essentials  of  the  Number- 
system  of  Arithmetic  and  Algebra — from  its  origin,  in 
the  intuitive  number-ideas  of  the  child,  to  its  final 
development,  in  the  Complex  Number  work  of  mathe- 

matical theory. 

Some  twenty  years  of  university  teaching,  and  some  six 

or  seven  years'  chairmanship  of  Public  Examination 
Boards  in  this  university,  have  convinced  the  writer 
of  the  need,  from  these  two  different  points  of  view,  for 
such  a  book.  Part  I.  fulfils  an  undertaking  to  provide 
the  kind  of  help  that  seems  to  be  necessary  for  teachers, 
and  their  pupils,  in  school  work — besides  being  the 
necessary  foundation  of  the  wider  plan. 

The  thesis  of  Part  I.  is  that  the  principles  of  Arith- 
metic-and- Algebra  constitute  a  scheme  which  is  one  and 

indivisible  :  that  algebraic  principles  are  necessary  for 

the  understanding  of  the  "  rules"  of  Arithmetic  ;  and 
that,  on  the  other  hand,  these  principles  of  Algebra  can 
be  properly  understood  only  when  applied  at  every  point 
to  the  arithmetical  facts  which  form  their  essential 

sub  j  ect-matter . 

An  essential  feature  of  the  treatment  of  the  subject  is 
the  special  place  given  to  the  Natural  Numbers — so  as 
to  retain  them  in  pristine  simplicity  as  a  reservoir  of 
number-ideas,  upon  which  to  draw  freely  in  the 
subsequent  general  mathematical  development.  This 
implies  a  definite  distinction  between  the  Natural 
Numbers  and  the  Positive  Integers — which  amounts,  in 
effect,  to  this,  that  the  latter  system  is  not  subject  to  the 
severe  restrictions  which  are  necessary  to  the  simplicity 
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of  the  Natural  Number  system  (and  are  therefore  re- 
garded as  characteristic  of  that  system).  It  also  implies 

that  in  mathematical  practice  (as  distinct  from  the 

arithmetic  of  elementary  "  counting")  the  Natural 
Numbers  are  superseded  by  the  Positive  Integers. 

The  common  thread  of  theoretical  argument  running 
through  the  book  is  the  establishing  in  Mathematics  of  a 
system  of  numbers,  subject,  without  restriction,  to  gener- 

alised operations  based  upon  the  seven  operational 
forms  of  the  original  operation  of  Addition — which  is 
inherent  in  the  Natural  Number  system. 

But  the  practical  principle,  of  the  relation  of  Number 
to  Ratio  and  Measurement,  is  regarded  as  only  secondary 
in  importance  ;  and  each  of  these  two  principles  is  used 
to  strengthen  the  effect  of  the  other.  There  is  need  for  a 
fresh  recognition  of  the  place  of  Number  in  Natural 
Philosophy — as  something  about  which  we  learn  from 
sources  outside  ourselves. 

Part  II.  is  necessarily  much  more  difficult  than  Part  I.  ; 
but  great  pains  have  been  taken  to  keep  the  difficulty  at 
the  irreducible  minimum,  consistent  with  sufficient 
accuracy  of  treatment.  It  is  hoped  that  a  presentation 
of  facts  as  to  the  Real  Numbers  and  the  Complex  Numbers 
has  been  given,  which  will  be  of  value  to  students  of 
Physics,  Engineering,  Philosophy,  and  Education,  as 
well  as  to  students  of  Pure  ̂ Mathematics. 

Mention  may  perhaps  be  made  of  the  use  to  which  the 
Decimal  Numbers  are  put,  to  bridge  the  chasm  between 
the  Rational  Numbers  and  the  Irrational  Numbers  ; 
of  the  fact  that  it  has  been  found  possible,  in  a  legitimate 

way,  to  avoid  defining  one  number  as  a  "  class"  of  other 
numbers  ;  of  the  restriction  to  "  one-valuedness"  rigidly 
imposed  on  Involution  (and  its  inverses)  in  the  Chapter 
on  Real  Numbers,  so  as  to  postpone  the  complication  of 

"  many-valuedness"  to  its  proper  context  in  the  follow- 
ing Chapter  ;  and  of  the  discussion  given  of  the  relation 

of  the  Complex  Numbers  to  the  facts  of  Plane  Geometry. 
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The  objective  of  the  book  has  been  interpreted  as  ex- 
cluding details  of  a  highly- specialised  mathematical 

character.  Hence  proofs  of  this  character  have  been 
omitted.  The  omission  could  be  made  good  in  an 
Appendix,  should  that  appear  at  some  future  time 
desirable. 

The  four  Appendices  deal  with  matters,  essential  to 
the  plan  of  the  book,  for  which  it  did  not  seem  advisable 
to  interrupt  the  general  argument.  The  most  debatable 
of  these  is  Appendix  II.,  which  discusses  a  question  the 
writer  believes  to  be  of  great  importance  to  mathematical 
practice.  Appendix  III.  deals  exhaustively  with  the 
exceptional  cases  of  the  operational  processes,  mainly 

associated  with  the  special  questions  of  "nought"  and 
"  infinity."  Appendix  IV.  gives  a  very  simple  treat- 

ment of  a  very  important  fundamental  topic. 
It  will  be  obvious  why  no  sets  of  examples  have  been 

included. 

Besides  the  special  obligation  expressed — all  too 
inadequately — in  the  dedication,  and  indebtedness  to 
innumerable  other  influences,  in  the  literature  of  the 
subject,  the  writer  wishes  to  single  out  for  mention  two 
classic  publications  which  made  a  great  impression  upon 
him  at  a  critical  point  of  his  work  as  a  university  teacher  : 

Dedekind's  Essay  on  "  Continuity  and  Irrational 
Numbers,"  and  Lagrange's  "  Lectures  on  Elementary 
Mathematics."  This  book,  however,  represents  an 
essential  unity  of  the  writer's  thought  and  experience  ; 
it  is  not  consciously  based,  in  any  specific  way,  on  the 
work  of  others. 

Thanks  are  due  to  Mr.  E.  O.  Hercus,  M.Sc.,  of  the 
Natural  Philosophy  Department  of  this  university,  for 
painstaking  care  in  reading  proofs,  and  for  valuable 
suggestions  as  to  points  in  the  presentation  ;  also  to  the 
printers  for  their  patience  in  producing  work  much  of 
which  was  of  an  unfamiliar  kind. 

D.  K.  P. 

Ormond  College, 
University  of  Melbourne. 

August,  1923. 
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PART  I. 

ELEMENTARY   PRINCIPLES 
OF  ARITHMETIC  AND  ALGEBRA. 





CHAPTER  I. 

THE  NATURAL  NUMBERS  AND  THE  OPERATIONS. 

1.  The  source  of  Number  ideas  is  the  system  of  "  Natural 
Numbers,"   which  we  call   "  one,   two,   three,   .," 
and  denote  by  1,  2,  3,   (infinitely  extended.     See 
§  10,  (i.)  and  Appendix  III.).     It  is  of  the  utmost  importance 
that  these  numbers  and  their  properties  should  be  thoroughly 
understood,  as  a  preliminary  and  a  foundation  to  the  whole 
science    of    Pure    Mathematics. 

2.  (i.)  The   "  operation"    of   Addition   is   inherent   in   the 
system  of  Natural  Numbers.     We  write,  for  example — 

3+  5=  5+3=8; 

and,  in  general  algebraic  form,  a+6=6+a=c;  any  natural 
number  "values"  of  a  and  b  giving  a  corresponding  natural 
number  value  of  c,  which  is  called  their  "sum."  And  we 
have  immediately  the  extension  to  the  addition  of  more 
than  two  numbers,  represented  by — 

a  +  6+  c  +  d+   
(ii. )  Here  we  come  first  upon  two  of  the  three  fundamental 

types  of  "  law"  with  which  a  great  part  of  elementary  Arith- 
metic-and- Algebra  is  concerned  :  laws  which  express  the 

fact  that  a  given  set  of  numbers  has  a  definite  "  sum" — as 
follows  : — 

(1)  The  order  of  the  terms  in  an  addition  expression  is 
immaterial  to  the  sum  ;    for  example — 
3+5+9=3+9+5=5+3+9=5+9+3=  etc.  =  17 

(2)  The  sum  may  be  arrived  at  by  grouping  the  terms  into 
sub -expressions  of  the  same  kind,  in  any  way,  and  adding 
their  sums  ;    for  example — 

3+5+2+9+6=  (3 +5) +(2 +9) +6 

=  3+  (5+2+  9)+ 6=  etc. 
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These  two  general  propositions  are  technically  known  as 

the  Laws  of  (1)  "  Commutation"  and  (2)  "  Association"  in 
Addition  ;  and  there  seems  to  be  no  sufficient  reason  why 
these  technical  terms  should  be  any  less  familiar  in  Secondary 

Education  than  the  terms  "  Addition,"  "  Subtraction,"  etc. 
But  whether  or  not  the  terms  are  used,  it  is  absolutely  essential 
that  the  laws  themselves  should  be  clearly  understood. 

3.  (i.)  Subtraction  is — and  remains  throughout  Algebi 

the  operation  "  inverse"  to  Addition. 
As  equivalents  to — 

3+  5=  5+  3=  8 

we  write  8-5=3  and  8-3=5;  or,  in  general  algebraic 
form,  if  a+6=6+a=c 

then  a  =  c  —  6      and      b  =  c  —  a 
But  here  we  note  an  essential  limitation  of  the  Natural 

Number  system,  namely,  that  such  an  expression  as  a  —  b 
can  only  be  used,  within  the  natural  number  system,  if  a  >  6*; 
that  is  to  say,  only  such  natural  number  values  of  a  and  6 

give  natural  number  values  of  the  "  difference"  a—  b. 
(ii.)  More  generally,  for  Addition  and  Subtraction  to- 

gether, we  have  the  algebraic  form  of  expression — 
a±  b±  c±  d±   

— subject,  within  the  natural  number  system,  to  the  conditions 
necessary  in  order  that  every  subtraction,  as  it  occurs,  should 

give  a  natural  number  as  its  "  result"  ;  for  example — 
7-3-2+1+4-6   

And  for  this  type  of  expression,  we  have  "  Laws  of  Com- 
mutation and  Association  in  Addition  and  Subtraction,"  as 

follows  : — t 
( 1 )  An  equivalent  expression  may  be  obtained  by  altering 

the  order  of  the  steps — provided 

*  The  sign  >,  meaning  is  greater  than.  .;ii<l  the  converse  sign  <, 
are  used  to  express   "order"  of  the  numbers  of   the  system;   for nyle,  7  >  3  and  6  <  9. 

f  These   "  laws"   are    theorems,   of   which   proofs    are  given   in 
Appendix  L 
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(a)  that  only  an  additive  term  of  the  original  expression 
may  be  given  the  first  place  in  the  new  expression  ; 

(6)  that  all  the  new  subtractions  introduced  by  the  change 
give  natural  numbers  as  their  results. 

(2)  An  equivalent  expression  may  also  be  obtained  by 
grouping  the  terms  into  sub-expressions  of  the  same  kind, 
under  simple  "  laws  of  signs"  —  if,  again,  every  new  sub- 

traction introduced  by  the  change  gives  a  natural  number 
"  result." 

For    example  — 
a—  6+  c  —  d—  e+  f  —  g=  c  —  g  —  d+  a+  f  —  e—  b 

and  =  a  -  (b-  c)-  (d  +  e)  +  (/-  g)  ; 

the  standard  simplest  form  for  "  evaluation"  being  — 

for  instance  — 
7-3-2+1+4-6=7+1+4-3-2-6 

=  (7-  3)-  (2-  l)+4-6=l. 

4.    Multiplication  is,  for  the  Natural  Numbers,  the  special 
addition  represented  by  — 

a+  a+  a+   ...... 

It  is  denoted  by  a  x  6  or  6.  a,*  if  6  denote  the  number  of 
equal  "  terms."  For  example,  5  x  3=  3.5=  5+  5+  5. 

It  is  easy  to  see  (or  to  "  prove")  that  — 
a  x  b  =  6  x  a  ;     for    example,    5x3=15=3x5;      and 

that  the  extended  multiplication  ax&xcxdx   ...... 
is  subject  to  Laws  of  Commutation  and  Association,  exactly 
like  the  Addition  laws')"  ;  for  example  [compare  §  2]  — 

(1)  3x5x9=3x9x5=5x3x9=  etc. 

(2)  3  x  5  x  2  x  9  x  6  =  (3  x  5)  x  (2  x  9)  x  6 
=  3x(5x2x9)x6=  etc., 

giving  a  definite  "  product"  of  a  given  set  of  natural  numbers. 

*  See  Appendix  II.  on  the  Multiplication  sign. 
f  See  Appendix  I.  ,  for  proofs. 
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5.  (i.)  Division  is — and  remains — the  operation  "  inverse" 
to  Multiplication  ;   so  that,  ifax6=6xa=c, 

we  write  also        a  =  c  +  b        and    6  =  c  -r  a*  ; 

for  example,  3  =  15  -f-  5     and     5  =  15^-3. 

Like  Subtraction,  the  previous  inverse  operation,  it  is, 
within  the  Natural  Number  system,  a  restricted  operation — 
only,  very  much  more  restricted. 

(ii.)  Subject  to  these  restrictions — namely,  that  every 
division,  as  it  occurs,  has  a  natural  number  as  its  "  result" — 
there  are  "  Laws  of  Commutation  and  Association  in  Multi- 

plication and  Division,"  exactly  like  those  for  Addition  and 
Subtraction.  For  example  [compare  §  3] — 

a-^bx  c+d+exf+g=c+g+dx  ax  /-=-  e  +  b 
=  a+(b-rc)-r(dx  e)x  (f+g) 

=  (axcxf)+(bxdxexg) 

(See  Appendix  I.)  ;   for  instance — 
15  -r  3  x  12  -r  2  -T-  10  =  15  x  12  -h  3  -r  2  4-  10 

=  (16-r3)x  12-M2x  10)  =3. 

6.  (i.)  The  question  whether  Laws  of  the  same  kind  hold 
for    expressions    involving    all    four    operations — Addition, 
Subtraction,  Multiplication  and  Division — is  clearly  a  subject 
for  consideration.     For  example,  are  the  expressions — 

a+  b  x  c—  d-t-  e,    b-±  ex  c+  a—  d,    a  +  6  x  (c  —  d)+  e, 
equivalent  expressions,  or  are  they  not  ? 

The  answer  is,  of  course,  that  they  are  not ;  and  the  first 
must  therefore  be  defined — to  mean 

a  +  (b  x  c)—  (d 4-  e) 

— the  multiplications  and  divisions  in  such  expressions  being 
performed  before  the  additions  and  subtractions,  if  not 
otherwise  specifically  required.  If,  for  example,  the  opera- 

*  Also  written  a  =  -g-  and  o  =  c/b  — this  last  being,  on  the 
whole,  the  most  serviceable  ;  }  •  t  all  three  notations  have  their  uses. 
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tions  were  to  be  performed  in  the  order  in  which  they  come, 
we  should  write — 

*(  (a+  b)  x  c-d)  +  e 

— an   expression   which   requires,   for   its   "  simplification," 
further  "  laws"  which  we  shall  now  state  : — 

(ii.)  For  multiplication  and  division  of  an  addition-and- 
subtraction  expression  we  have  "  Laws  of  Distribution," 
which  are  easy  to  prove  for  the  Natural  Numbers,  as  follows  : — 

(1)  (a±b±  c±  •••)xk=axk±bxk±c  +  k±   
for  example — 

(7 -3-2+1  +  4- 6)  x5=  35 -15 -10 +5+ 20 -30 
and,  conversely — 
(a±b±c±  -  •  ')+k=a+k±b+k±c+k±   ; 
(2)  For  the  case  of  multiplication  this  can  be  immediately 

extended  to  the  multiplication  together  of  any  number  of 
expressions  of  the  form  a±  b±  c±  d±  •  •  -  the  terms  of 
the  "distributed"  expression  being  all  the  products  of  terms, 
one  from  each  of  the  factor-expressions,  and  being  additive 
or  subtractive  according  as  an  even  or  an  odd  number  of 
their  factors  come  from   subtractive  terms  of  the  factor- 
expressions. 

7.  These  facts  about  Addition,  Subtraction,  Multiplication 
and  Division — with  their  Laws  of  Commutation,  Association 
and  Distribution — are  comparatively  easy  to  prove  (or,  at 
any  rate,  to  demonstrate  convincingly)  if  kept  strictly  within 
the  Natural  Number  system.  (See  Appendix  1.) 

The  first  business  of  Elementary  Arithmetic  is  with  these 
operations  and  laws  as  actually  applied  to  natural  numbers 
in  general.  [See  §  10,  below].  And  the  first  business  of 
Elementary  Algebra  is  familiarity  with  the  laws  in  their 
general  algebraic  forms. 

But  before  proceeding  further  in  these  directions,  it  is 
important  to  complete  the  definitions  of  the  system  of  opera- 

tions which  have  their  origin  in  the  properties  of  the  Natural 
Numbers. 

*  Different  kinds  of  brackets  for  expressions  of  this  kind  are  not 
necessary,  nor  even  in  the  long  run  desirable  ;  but  they  are  useful  in 
elementary  teaching. 
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8.  (i.)  Involution,  for  the  Natural  Numbers,  is  an  operation 
which  has  the  same  relation  to  Multiplication  that  Multiplica- 

tion itself  has  to  Addition.     It  is  the  special  multiplication 
represented  by  a  x  a  x  a  x   ;    and  it  is  denoted  by 
a6,  in  which  6  denotes  the  number  of  equal  "  factors."     For 
example—  2s  =  2  x  2  x  2=8. 

The  quantity  a  is  called  the  "  base"  ;  b  the  "  exponent"  ; 
and  a6  is  called  a  "  power  of  a." 

(ii.)  But  the  analogy  with  Multiplication  (and  with  Ad- 
dition) fails  in  this  respect,  that  ab  is  not  equal  to  6°  ;  for 

example—  23  =  8  and  3  2  =  9. 
This  fact  makes  unimportant  any  extension  of  involution 

expressions,  to  more  than  two  numbers.  There  is  nothing 
here  corresponding  to  the  unique  sum,  or  the  unique  pro- 

duct, of  a  number  of  given  numbers.  And,  for  the  same 
reason,  there  is  no  important  operation  with  the  same  re- 

lation to  Involution  that  Involution  has  to  Multiplication  and 
Multiplication  to  Addition. 

(iii.)  It  is  easy  to  see  that,  for  natural  number  values  of 
a,  6,  c  (and  6  —  c,  a  -f-  6,  where  they  occur), 

ab  + c  =  ab  x  ac     and    ab~c  =  ab  H-  ac ;     (ab)c  =  a6  x  c  =  (ac)6  ; 
(ax6)c=acx6c    and    (a  -=-  b)c  =  ac  4-  6C. 

For  example  (see  §§4  and  5). 

2s  x  26=  (2x  2x  2)  x  (2  x  2x  2x  2x  2) 
=  2  x  2  x   •  •  •  x  2  =  28 

26-23=(2x2x2x2x2)-M2x2x2)=2x2=2«. 

(2»)8  =  (2x  2x  2)x  (2x  2x  2)x  (•  •  •  )*  (•  •  •  )x  (•  •  •  ) 
=  2x2x2x-..-x2=  215=  (25)3; 

(3x  6)2  =  (3x  6)x  (3x  5)=  (3x3)x  (5  x  5)=  32x  52 
(9n-  3)2  =  (9-r-  3)x  (9-f-  3)=  (9x  9) -r  (3  x  3)=  92-^  3a 

9.  The  fact  that  ab  is  not  equal  to  ba  has  this  further  effect; 
that  there  are  two  different  operations  "  inverse"  to  Involution. 

If  a6  =  c,  we  write  a  =  fyc  and  6  =  logac  ;    for  example — 
23=8,       2-^8,       3=log28. 

The  first  of  these  two  inverse  operations  is  called  Evolution ; 
the  other  (too  long  denied  a  place  among  the  operations  of 
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Algebra)  may  be  called  "  Logarithmation"— for  want  of  a 
better  name.* 

The  restrictions  upon  both  of  these  operations — within 
the  Natural  Number  system — are  very  great.  But,  in  so 
far  as  they  can  be  used,  the  following  are  practically  obvious 
inverse  forms  of  the  Involution  theorems  of  §  8,  (iii.) : — 

(1)  ̂ (6xc)=  ?/bx   ̂ c      and       ty(b+c)=  %/b+  ̂ c\ 

ab+c  =  j/ab  and  v/{/c=  fyc=>    fy  %/c,    tip=axb. 

For   example,      4/144  =  ̂ /9  x  fylG    and     */4  =  ̂ 364-^/9  ; 
23=  ̂ /212and  ̂ 15625  =  ̂ /15625  =  ̂ 15625 

(4/25   =         5       =    {,125). 
(2)  loga(6  x  c)  =  Ioga6  4-  logac 

and                        loga(6  H-  c)  =  loga&  -  logac  ; 
Iog06c  =  c.  Iog06     and    Ioga6  x  log&c  =  logac 

or      Iog6c  =  logac  -^  Iog06. 
For  example,   Iog2256  =  Iog28  +  Iog232 
and  Iog24  =  Iog232  -Iog28  ; 

Iog24096  =  3.  Iog216  =  Iog216  x  Iog164096 
and  Iog164096  =  Iog24096  -r  Iog216. 

[  Note. — The  obvious  very  careful  adjustment  of  the  numbers 
in  these  examples  indicates  clearly  the  nature  of  the  re- 

strictions on  elementary  use  of  these  two  inverse  operations. 
The  extent  to  which  the  numbers  2  and  3  are  used  in  them — 

as  evolution-indices  or  bases  —  is  significant.  Examples 
become  rapidly  more  cumbrous  as  base  and  exponent  (and 
index)  numbers  are  increased.] 

10.  (i.)  The  Decimal  (or  positional)  Notation  for  the 
Natural  Numbers  is  a  powerful  mathematical  instrument. 
Its  uses  in  the  operations  of  Addition,  Subtraction  and 
Multiplication  are  based  upon  the  Laws  of  §§  2-6  above,  f 

*  The  term  "  Logarithmation"  is  not  in  general  use.  But  it  will 
be  found,  for  instance,  in  Steinmetz'  "  Engineering  Mathematics"  (3rd 
Edn.),Ch.  I.,  §  15,  p.  20. 

t  Knowledge  of  the  use  of  this  notation  is,  of  course,  assumed  in 
foregoing  sections,  i.e.,  knowledge  of  the  elementary  practice  of 
Arithmetic  by  mechanical  rules.  We  are  here  concerned  with  the 
arithmetical  and  algebraical  principles  underlying  these  elementary 
rules  of  Arithmetic. 
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We  use  a  small  number  of  special  symbols — the  "  figures" 
1,  2,  3,  .  .  .  .9  and  0.  The  natural  numbers  one,  two,  three, 
....  nine  are  denoted  by  1,  2,  3  ....  9.  Beyond  these 

the  principle  of  "  position"  is  used  ;  and  in  the  application 
of  that  principle  the  symbol  0  plays  an  important  part — 
of  which  the  significance  will  appear  more  clearly  as  we  pro- 

ceed. The  number  ten  is  denoted  by  the  double-symbol  10  ; 
eleven  by  11,  which  means  10+  1  ;  etc.  ;  nineteen  by  19, 
which  means  10  +  9  ;  then  twenty  by  20,  which  means  2.10  ; 
twenty-one  by  21,  which  means  2.10-f  1  ;  etc.,  for  example, 
seventy-four,  which  means  7.10  +  4  ;  ninety-nine  by  99, 
which  means  9.10+9;  then,  again,  one  hundred  by  100, 
which  means  10.10  or  10 2;  one  hundred  and  one  by  101, 
which  means  100  +  1  or  10  2  +  1 ;  and  so  on  ;  for  example,  three 
hundred  and  fifty-six  by  356,  which  means  3.102+  5.10  +  6; 
and  four  thousand,  eight  hundred  and  sixty-five  by  4865,  which 
means  4.10  3+  8.10  2+  6.10+  5. 

The  constituents  of  the  composite  decimal  symbol  for  a 

number  are  called  its  "  digits" — being  units  digit,  tens  digit, 
hundreds  digit,  etc.  ;  for  example,  6,  5,  3  respectively  for 
the  number  denoted  by  356  ;  1,  2,  0,  5  for  the  number  denoted 
by  5021. 

And  we  note  that,  for  the  most  part,  the  names — such  as 
"  seventy-four"  and  "  three  hundred  and  fifty-six" — are 
just  an  expression  in  words  of  what  the  notation  more  scien- 

tifically expresses.  The  resources  of  ordinary  language  for 
this  purpose  are  soon  exhausted — even  in  the  Hindu  language, 
which  is  specially  (and,  of  course,  quite  unnecessarily)  rich 
in  number  words  ;  but  the  decimal  notation  is  inexhaustible  : 

it  is  adequate  to  the  essential  "  infinity"  of  the  natural 
number  system. 

(ii.)  (1)  The  special  significance  of  the  symbol  0  is  to  be 
emphasised.  Its  relatively  recent  introduction  is  one  of  the 
great  landmarks  of  mathematical  science.  The  peculiar 
importance  of  its  use  is  that  it  serves  to  maintain  the  essential 
principle  of  position  when  none  of  the  original  number 
symbols  (1,  2,  •  •  •  9)  can  be  used  for  that  purpose  ;  for 

example,  in  5021,  which,  expressed  verbally,  reads  "  five 
thousand  and  twenty-one" — with  a  gap  between  the  "  tens" 
and  the  "  thousands."  The  distinction  between  5021  and 
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521  (and,  more  generally,  500  •  •  200  -  -  100  •  •  )  is  a 
perfect  economy  of  notation. 

(2)  But  this  fact  clearly  carries  with  it  a  "number"  meaning 
for  the  symbol  0,  when  used  alone.     For  the  notation  5021, 

for    example,    meaning    5.103+  0.10  2+  2.10+  1 — following 
the   general   principle   stated   in    (i.) — amplifies   the    verbal 
expression     "  five     thousand     and     twenty  -  one"    by    the 
equivalent  of  some  such  phrase  as  "no  hundreds,"  or  "nought 
hundred."     And   thus   we   come   at  the   "  number"   nought 
(denoted  by  0),  which  is  such  that 

0+0+0+  •  •  •  =7i.0=0=0.w,  7i+  0=  n=  0-f  n,*  etc., 
for  all  natural  number  values  of  n.  Its  relation,  in  addition 

and  subtraction,  to  1  gives  it — at  any  rate,  in  a  certain 
mathematical  sense — a  place  at  the  beginning  of  the  Natural 
Number  sequence,  so  that   we   write  0,  1,  2,   3   as 
amplified  form  of  that  sequence. 

(3)  The  use  of  the  symbol  0  is,  of  course,  independent 
of  the  number  of  the  other  special  number  symbols,  1,  2,  etc. 

If  we    use  eleven  others,  instead  of  nine,  we  have   "  the 
duodecimal   system" — in  which   it   is   the   number   we  call 
"  twelve"  which  is  denoted  by  10.     If  we  used  only  one 
other,  viz.,  1,  the  natural  numbers  one,  two,  three,  four,  five, 
six  ....  would  be  denoted  by  1,  10,  11,  100,  101,  110,  .  .  . 

It  is  perhaps  worth  noting  that  the  number  of  digits  in  the 
decimal  symbol  for  any  given  number  may  be    increased  to 

any  extent  we  please,  by  prefixing  "  noughts"  ;  for  example — 5021  =  0005021. 

(iii.)  The  additionf  of  two  natural  numbers,  so  denoted — 
for  example,  327  and  4865 — is  a  simple  application  of  the 
"  Laws  of  Algebra,"  as  follows  : — 

4865  i      (  4.10  3+  8.10 2   +  6.10+  5 

+  327  )  ~(  +  3.102   +  2.10+7 
=    4.103+  11.102+  8.10+  12. 
=    4.103+ (10+ 1).102+ 8.10+ (10+2) 
=    5.103+102+9.10  +  2. 
=    5192, 

in  which  the  basis  of  the  ordinary  arithmetical  rule  is  apparent. 

*  See  Appendix  III.  on  0  and  oo . 
f  The  elementary  "  Addition  Table"  and  "  Multiplication  Table" 

— for  addition  and  multiplication  of  the  basic  numbers  1,2,  ...  9 — 
are,  of  course,  assumed  as  a  basis. 
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(iv.)  So,  again,  for  subtraction  ;  for  example, 

4527   i      (  4.103+  5.10  2  +  2.10+  7. 
-865   I      (  -  8.10  2-6.10 -5. 

(reversing)  =(7-5)+(10+ 2- 6).10  +  (10+4-8).102+3.103 
(re-reversing)  =  3.103+  6.102  +  6.10+  2. =  3662, 

in  which,  again,  the  basis  of  the  arithmetical  rule  is  apparent. 

(v.)  For  multiplication,  we  proceed  in  two  stages  : — 

(1)  for  example, 

327  x  9=  9.  (3.10 2+  2.10+  7) 
=  27.10  2+  18.10+  63, 

by  Law  of  Distribution  [§  6,  (ii.)] 

=  27.10  2+  (18+  6).10+  3. 
=  27.10  2+  (20+  4).10+  3. 
=  29.10  2+  4.10+  3. 
=  2.103+  9.102+  4.10+  3 =  2943, 

in  which,  once  again,  the  basis  of  a  familiar  arithmetical  rule 
is  apparent ; 

(2)  then,  again,  for  example — 

4865  x  327  =  4865  x  (3.10  2  +  2.10  +  7). 
=  4865  x  3  x  102+  4865  x  2  x  10+  4865  x  7, 

and  this  gives,  using  the  rule  of  (1) — 
1  4  5  9  5[0  0] 

+        973  0[0] 
+       34055 

=  1590855, 

again  making  apparent  the  basis  of  the  arithmetical  rule,  in 
which  the  terms  of  the  final  step  are  commonly  taken  in 

either  of  the  two  opposite  orders  (and  the  "  noughts"  in 
brackets  omitted). 
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11.  (i)  The  "  Division- transformation"  is  a  process  of  succes- 
sive subtractions,  "  inverse"  to  the  process  of  additions  by 

which  multiplication  of  natural  numbers  (see  §  10,  (v.)  )  is 
performed. 

Given  natural  number  values  of  a  and  b,  such  that  a>bt 
the  problem  is  to  find  the  greatest  multiple  of  6  which  is  not 
greater  than  a  ; 
or,  algebraically,  to  find  natural  number  values  of  c  and  d 
such  that — 

a=bxc+d    and    d<b. 

Using  the  decimal  notation,  the  successive  digits  for  the 
number  c  are  found  as  in  the  following  example  : — 

If  a  =  84613  and  b=  327,  we  have 
84613=  327  x  2x  10  2+  19213 

the  primary  fact  at  this  stage  being  that — 
6x  2x  102  <  a  <  b  x  3  x  10 2. 
19213  =  327  x  5  x  10  +  2863 
2863=  327  x  8+247 

Hence  84613  =  327  x  258  +  247  ;   i.e.,  c  =  258  and  d  =  247. 

[Note. — The  first  step,  in  this  example,  finds  the  "hun- 
dreds" digit  for  c,  the  second  the  "  tens"  digit,  the  third  the 

"  units"  digit.  These  three  digits  then  determine  the  required 
multiplier  of  6.  The  details  of  the  process  are  set  out — in 
"  long  division" — so  as  to  avoid  repetition  of  the  "  remainder" 
numbers  19213,  etc.]. 

(ii.)  Since,  in  (i.),  a  common  "  factor"  of  a  and  b  must  also 
be  a  factor  of  d,  the  "  Highest  Common  Factor"  of  a  and  b  is 
obtainable  by  a  systematic  succession  of  division-transforma- 
tions. 

(iii.)  Of  less  practical  importance,  but  of  considerable 
interest  as  an  application  of  similar  principles,  is  the  arith- 

metical'rule  for  finding  "  Square  Roots." 
With  a  view  to  later  developments,  the  problem  may  be 

stated  in  the  following  way — 
Given  a  natural  number,  N,  find  another,  S,  such  that 

S*  <  N<  (8+  1)». 
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Using,  for  S,  the  general  polynomial  form — 
a.tn+  b.tn~l  +  c.tn~-+  •  •  •    +&.J  +  Z 

(  =  A+B+C  +  •  -    +  K  +  1). 
in  which  t=  10  and  a,  b,  c  ....  k,  I  are  natural  numbers, 

each  less  than  10 — we  first  find  n  and  a,  "by  inspection,"  so that 

(a.tn)*<  N <((a+l}.tn)*    or     A*<N<A'*. 
We  then  to  proceed  to  find  6,  so  that — 

(a.tn+  b.l"-1)*  <N  <  (a.tn+  (b  +  I).*"'1)' 

or  (A+B)2  <N  <  (A+B')> 
whence       (2.A  +  B).B  <N  -  A  »<  (2.  A  +B').B' 
say  Tl<Nl<  TI 

— a  relation  from  which  6  (or  B)  can  be  determined  "  by  trial." 
(See  the  example,  below.) 

So,  again,  c  from 

(2.  A  +  2.  B  +  C).  C<N-><(2.A+2.B  +  C').Cf 
or  T2  <N2<Tz' 
where  N2=  N-  (A  +£)2=  tfi-Ti, 

etc. 

For  example,  if   JV=  74136529,  then  w=3  and  a  =8; 
tf !  =  ̂ -^2=  ^-64xl06=  10136529, 

and  "trial"  gives  6=6,  whence 
(2.  A+B).B=  (166  x  102)  x  (6  x  102)  =  996  x  104  =  T± 

Hence  ^2  =  ̂   -  T!  =  176529,  and  trial  gives  c  =  1, 
whence  (2..4  +  2..B+  C).C=  (1721  x  10)  x  (1  x  10) 

=  1721  xlO1-^ 

Finally       #3  =  ̂ 2  -  T2  =  4429,      and  d  =  0. 

This  gives  the  result,  namely,  86102  <  N  <  86112. 
The  arithmetical  rule  gives  an  obvious  simple  setting  out  of 

the  numerical  details. 



CHAPTER  II. 

THE  GENERAL  NUMBERS  OF  MATHEMATICS. 

12.  (i.)  The  general  mathematical  system  of  numbers  is 
built  up  on  the  foundation  of  number  ideas  derived  from  the 
study  of  the  Natural  Numbers.  It  fulfils  two  important 
requirements,  namely  : — 

(1)  it  provides  fully  for  measurement  of  quantities  of  a 
given  kind,  in  terms  of  a  unit  quantity  of  that  kind 
(for  example,  lengths  or  angles)  ; 

(2)  the  new  types  of  "  number,"  and  the  extensions  of 
the  "  operations"  which  they  require,  are  such  that 
no  restrictions  are  necessary  in  the  application  of 

the  "operations"  to  the  "  numbers." 
But  while  the  whole  fundamental  theory  of  the  Natural 

Numbers  is  (as  we  have  seen)  quite  simple  and  elementary, 
the  general  mathematical  theory  is  long  and  involved,  and 
in  certain  respects  very  difficult.  This  is  why  it  is  important — 
in  order  to  ensure  dear  ideas  about  Number  in  general — to 
keep  the  theory  of  the  Natural  Numbers  quite  distinct  from 
the  more  general  theory.  It  is  comparatively  easy  to  know 
everything  of  fundamental  importance  about  the  Natural 

Numbers,  if  they  are  kept  strictly  to  themselves  ;  it  is~not  at all  easy  to  know  everything  of  fundamental  importance  about 
the  general  numbers  of  Mathematics.  But,  as  all  number 
ideas  can  ultimately  be  traced  back  to  natural  number  ideas, 
the  difficulties  of  the  general  theory  may  be  minimised  by 
obtaining  a  thorough  knowledge  of  the  elementary  theory — 
in  the  way  indicated  in  foregoing  sections. 

(ii.)  The  mathematical  system  consists  of  : 

(1)  the  "  Integral  Numbers,"  positive  and  negative  ; 
(2)  the  "  Fractional  Numbers,"  positive  and  negative — 

Integral  and  Fractional  Numbers  together  forming 

the  system  of  "  Rational  Numbers"  ; 
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(3)  the  "  Irrational  Numbers,"  positive  and  negative — 
Rational  and  Irratioral  Numbers  together  forming 

the  system  of  "  Real  Numbers"  ; 
(4)  the  "  Unreal  Numbers" — Real  and  Unreal  Numbers 

together  forming  the  system  of  "  Complex  Numbers," 
which  is  the  general  mathematical  system  of  numbers. 

(The  "  Imaginary  Numbers"  are  a  particular  class  of 
Unreal  Numbers,  formed  as  products  of  the  real 
numbers  with  the  number  t  such  that  t, 2  =  -  -  1  ; 
see  Ch.  VI.,  §  25  (iii.)  ).* 

[Note. — All  the  names  used,  except  "  Integral"  and  "  Frac- 
tional," have  been  unfortunately  chosen.  "  Rational"  and 

"  Irrational"  were  probably  never  meant  to  have  any  con- 
nection with  the  everyday  use  of  these  terms  ;  the  root-word 

is  ratio,  but  the  relationship  with  it  is  mathematically  un- 

sound, f  "  Real,"  "  Unreal,"  and  "  Imaginary"  convey  a 
quite  exaggerated  antithesis — based  on  what  is  little  more 

than  different  degrees  of  familiarity  with  equally  "  real"  uses 
of  these  several  types  of  Number.  The  student  should 
accustom  himself  as  quickly  as  possible  to  use  them  merely 
as  defined  technicalities  of  mathematical  science.] 

*  We  shall  find  that  it  is  best  to  define,  in  this  c<  nnecti  n,  first  the 
"  Im .:«:in  ry  Numbers,"  then  the  j:  e  leral  "  Complex  Numbers."  The 
"  Unreal  Numbers"  are  best  thought  of  as  the  complex  numbers  whi  h 
are  not  "  r     I.' 

f  See  Ch.  V. ,  §  20. 



CHAPTER  III. 

THE  INTEGRAL  NUMBERS. 

13.  The  Positive  Integral  Numbers  are,  in  ordinary  usage, 
not  distinguished  from  the  Natural  Numbers  ;  but  it  is  much 
better  that  they  should  be,  for  reasons  indicated  in  §  12  (i.). 
They  belong  essentially  to  the  general  mathematical  system 
outlined  in  §  12  (ii.). 

The  proper  distinction  consists  in  the  fact  that  while  the 
properties  of  the  Positive  Integral  Numbers  are  primarily 
defined  directly  from  those  of  the  Natural  Numbers,  these 
new  numbers  are  gradually  and  progressively — in  the  develop- 

ment of  the  mathematical  system — freed  from  the  restrictions 
which  are  to  be  regarded  as  characteristic  of  the  Natural 
Numbers.  The  distinction  is  not,  of  course,  a  practical 
necessity ;  but  its  theoretical  importance  can  hardly  be 
exaggerated — towards  a  sound  understanding  of  mathe- 

matical principles. 
14.  (i.)  The  Positive  Integral  Numbers  and  the  Negative 

Integral    Numbers — say   positive  1,   positive  2,   .    .    .    .    and 
negative  1,  negative  2,  ....  — have   (each  sub-system)  pro- 

perties in  Addition  and  Subtraction  derived  directly  from  the 
Natural  Numbers  ;    for  example — 

pos  3  +  pos  5  =  pos  5  +  #os  3  =  pos  8, 
neg  3  +  neg  5  =  neg  5  +  neg  3  =  neg  8  ; 
pos  5  —  pos  3  =  pos  2  ;  neg  5  —  neg  3  =  neg  2.* 

*  The  notation  "  +  3,"  "  —  5"  is  used  for  "  positive  3,"  "  negative  5," 
and  should  be  so  read  ;  for  example,  "  (  +  3)—  (—  5)  "  should  be  read 
"  positive  3  minus  negative  5 — implying  two  quite  distinct,  though 
of  course  closely  related,  uses  of  "  +  "  and  "  —  ".  There  is,  further,  a 
third  quite  distinct  use  of  the  sign  "  — ,"  namely,  meaning  "  opposite"  ; 
for  example,  +  3  and  —  3  are  opposite  numbers,  and  we  may  write 
_  3  =  _  (  +  3)  or  +  3  =  —  (—  3) — a  form  which  is  most  familiar  in 
the  equivalence  of  the  algebraic  relations  x  +  y  =  0  and  y  =  —  x 
(meaning  that  y  is  opposite  in  value  to  x). 

Note  that  the  phrase  "  equal  and  opposite"  is  a  contradiction  in 
terms,  besides  being  uneconomical  in  its  use  of  words  ;  "  opposite  in 
sign"  is  a  useful  phrase  for  the  qualitative  relationship  it  expresses. 

The  +,  meaning  positive,  is  commonly  omitted.  This  emphasises 
the  specially  intimate  relation  between  the  Positive  Integers  and  the 
Natural  Numbers. 
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But  they  are  combined  into  one  system  —  the  system  of 
Integral  Numbers  —  by  means  of  the  "  number"  nought, 
related  to  them  according  to  the  following  propositions 
[See  §  10,  (ii.)  ]  :— 

0  =  pos  a  —  pos  a  =  neg  a  —  neg  a 

-  pos  a  +  neg  a  =  neg  a  +  pos  a 

of  which  the  inverse  forms  are  — 

pos  a  =  0  +  pos  a  =  pos  a  ±  0  =  0  —  neg  a 

neg  a  =  0  +  neg  a=  neg  a  ±  0  =  0  —  pos  a 

And  the  operations  of  Addition  and  Subtraction  (so  ampli- 
fied), with  the  Laws  of  Commutation  and  Association  which 

are  regarded  as  characteristic  of  these  operations,  may  then 
be  applied  without  restriction  to  the  Integral  Numbers.  Thus 

=  (+3)  +(+5)  =+8;      and     (-3)  -(  +5)  =  -8  ; 

(+3)-(+5)=(+3)-((+3)+(+2))=(+3)-( 
=       0-(+2)=-2;     and     (-3)  -(  -5)=  +2  ; 

(+3)  +  (-5)  =  (+3)+((-3)+(-2))=(+3)+(-3)-f(-2) 
0+(-2)=-2;      and     (  +5)  +(  -3)  =  +2. 

A  practical  principle  of  very  great  importance  is  that 
addition  of  any  integral  number  is  equivalent  to  subtraction 
of  the  opposite  integral  number,  and  vice  versa. 

(ii.)  So  far  as  Addition  and  Subtraction  are  concerned,  the 
Negative  Integers  are  distinguished  from  the  Positive  Integers 
only  relatively,  not  absolutely  :  these  two  sub-systems  have, 
with  respect  to  these  operations,  both  the  same  relation  to 
the  Natural  Number  system.  But  for  Multiplication  it  is 
not  found  possible  to  maintain  a  similar  position.  This 
operation  is  first  defined  for  one  of  the  two  sub-systems,  by 
analogy  with  multiplication  of  natural  numbers  ;  and  the 
proper  completion  of  the  definition  is  then  deduced.  Choice 
of  the  Positive  Integers  for  this  purpose  is  the  beginning  of  a 
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process  of  establishing  a  special  relationship*  between  the 
Natural  Numbers  and  the  Positive  Integers. 

By  hypothesis,  (1)  multiplication  of  a  positive  integer  by  a 
positive  integer  is  simply  a  particular  addition ;  hence 
(2)  multiplication  of  a  negative  integer  by  a  positive  integer 
may  also  be  defined  as  a  particular  addition — for  example, 

( -  5)  x  ( +  8)  -  ( -'  5)  +  ( -  6)  +  ( -  5) «  -  15  ;  (3)  regard- 
ing the  Law  of  Commutation  as  characteristic  of  Multipli- 

cation, we  therefore  define,  for  example,  ( +  3)  x  ( —  5)  to  be 
equal  to  (  —  5)  x  (  +  3),  that  is,  (  —  15) — from  which  we  have 
the  principle  that  multiplication  by  a  negative  integer  has  the 
opposite  effect  (gives  the  opposite  result)  to  multiplication 
by  the  opposite  positive  integer  ;  hence  (4)  the  definition  of 
Multiplication  is  completed  by,  for  example,  ( —  5)  x  ( —  3) 

-  |(-5)x  (+3)[=  +15.f 
Thus  Multiplication  begins  to  have  a  meaning  to  some 

extent  independent  of  its  original  purely  addition  meaning  ; 
and  this  independence  increases  at  later  stages  of  the  theory. 

(iii.)  We  have  now  operations  of  Addition,  Subtraction  and 
Multiplication  for  the  Integral  Numbers,  which  are  quite 
unrestricted  in  their  application  to  these  numbers — all  such 
operations  on  integral  numbers  producing  integral  results. 

These  three  operations  are,  therefore,  called  "  the  Integral 
Operations." 
The  restrictions  on  Division  of  integral  numbers  (defined 

as  the  inverse  of  Multiplication)  are  practically  the  same  as 
for  natural  numbers. 

*  The  relationship  is   so  close  that  the   Positive   Integers  are  not 
commonly  distinguished  from  the  Natural  Numbers.     (See  §  13). 

f  The  definition  requires  supplementing  by,  for  example, 
0  x  (±  3)  =  0  =  (±  3)  x  0  ;    see  §  10,  (ii.). 

It  may  be  here  noted  that  the  Negative  Integral  Numbers — in 
themselves — appear  to  have  very  little  practical  application  (more 
particularly,  their  Multiplication  properties).  Their  practical  im- 

portance consists  in  the  fact  that  they  are  part  of  the  general 
Number-system — in  which  the  Negative  Numbers  are  as  indispens- 

able as  the  Positive  Numbers.  See  Note  at  the  end  of  Ch.  IV.  (p.  28). 
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(iv.)  Involution,  being  for  the  Natural  Numbers  simply  a 
special  multiplication,  is  defined  for  positive  integral  exponents 
in  the  same  way — the  base  being  either  positive  or  negative. 

We  have  then  [as  in  §  8,  (iii.)]  : — 

a?  +  c  =  ab  x  ac,     ab  xc  =  (ab)°  =  (ac)6,    (a  x  b)c  =  ac  x  bc 
for  integral  values  of  the  base  quantities  and  positive  integral 
values  of  the  exponent  quantities.  And  these  give  the 
following  inverse  forms — restricted,  as  shown,  at  this  stage  : — 

ab  ~ c  =  ab  H-  ac,  if  b  >  c  ; 

ab^c  =  ̂ /aby  if  b  divisible  by  c  ; 

(a  -h  6)c  =  ac  -f-  6C,  if  a  divisible  by  6. 

The  extension  to  negative  integral  exponents  cannot  be  made 
until  the  Fractional  Numbers  have  been  defined  and  brought 

into  use.  But  we  may  note  here  that  ab  ~ c  =  ab/ac  is  used, 
in  the  extreme  case  when  b  =  c,  to  give  the  definition  a°  =  +  1, 
for  all  the  values  of  a.  * 

*  A  definition  which  may  clearly  also  be  applied  to  the  Natural 
Number  case. 



CHAPTER  IV. 

THE   RATIONAL   NUMBERS. 

15.  (i.)  The  extension  of  the  mathematical  number-system 
from  Integral  to  "  Rational" — and,  subsequently,  to  "  Real" 
— Numbers,  comes,  as  a  matter  of  practical  experience,  from 

the  application  of  numbers  to  the  "  measurement"  of  Physical 
Quantities. 

In  the  most  elementary  measurement — of  a  length,  or  an 
angle — we  use  first  some  chosen  "  unit"  length,  or  angle, 
and  find  the  nearest  "  integral  multiple,"  of  that  unit,  less 
than  the  quantity  being  measured.  We  then  use  a  sub-unit, 
which  is  some  "  sub-multiple"  of  the  original  unit,  and  apply 
it  in  the  same  way  to  the  part  which  was  left  "  unmeasured" 
at  the  first  stage  ;  and  so  on.  For  example,  we  may  use, 
for  lengths,  yard,  foot,  inch,  eighth  of  inch  ;  metre,  decimetre, 
centimetre,  millimetre  ;  and,  for  angles,  degree,  minute,  second, 

tenth  of  second  ;  etc.  Thus  :  angle  AOB  =  35°  42'  31". 
But  it  is  a  very  important  scientific  advance  to  realise  that 

the  same  facts  of  measurement  may  be  expressed  by  the  use 
of  only  one  unit  quantity  (of  the  kind  in  question)  and  one 

"  rational"  number — which  may  be  either  integral  or  "  frac- 
tional." This  number,  when  its  existence  has  been  estab- 

lished, is  called  the  "  ratio"*  of  the  quantity  measured  to 
the  unit  quantity — or,  again,  the  "  measure"  of  the  original 
quantity  in  terms  of  the  unit. 

(ii.)  But  in  order  to  establish  these  principles  of  Measure- 
ment, the  Fractional  Numbers  have  to  be  defined  in  some 

purely  number  way,  and  their  existence,  as  "  numbers,''  then 
further  justified  by  showing  that  they  can  be  used — along 
with  the  Integral  Numbers — in  properly  defined  operations 
of  Addition,  Subtraction,  Multiplication,  etc. 

*  For  an  elementary  discussion  of  Ratio,  see  "A  First  Trigonometry," 
by  Waddell  &  Picken  (Melville  &  Mullen,  Melbourne),  Ch.  I.  For  a 

fuller  treatment,  see  article  on  "  Ratio  and  Proportion,"  by  the  writer, in  the  Mathematical  Gazette,  January  and  May,  1920 
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(iii.)  A  fractional  number  is  defined  as  the  quotient  of  two 
integral  numbers — when  such  quotient  is  not  itself  integral. 
For  example,  a  "  number,"  /,  is  defined  such  that 

/=  5  +  3,  and,  inversely,  /  x  3  =  5 
the  definition  of  this  number  thus  including  definition  of  its 
multiplication  by  3. 

Regarding  Association  and  Commutation  as  essentially 
characteristic  of  Multiplication,  we  shall  amplify  the  definition 
by,  for  example, 

(/x  3)x  28  =  /x  (3x  28)  =  /x  84; 
whence  /  x  84  =  5  x  28  =  140,  and  /=  140  +  84. 

Thus  every  rational  number  (whether  integral  or  fractional) 
has  an  infinity  of  different  (but,  of  course,  equivalent) 

"  fractional  expressions" — obtainable  by  multiplying  (or 
dividing)  both  numerator  and  denominator,  of  any  one  of  its 
fractional  expressions,  by  the  same  integer.  (The  division  of 
numerator  and  denominator  by  a  common  factor  is  specially 

familiar,  in  the  elementary  process  of  reducing  "  fractions" 
to  simpler  forms,  by  "  cancelling"  common  factors  of  numer- 

ator and  denominator). 
The  simplest — or  irreducible — fractional  form  (when  the 

number  so  expressed  is  not  integral)  is  used  to  denote  the 

fractional  number  ;  for  example,  /  =  5/3.  The  "  mixed" 
form  l2/s,  used  to  some  extent  in  Arithmetic — meaning 
1  +  2/s* — is  essentially  a  secondary  form  (of  no  particular 
mathematical  importance). 

The  example  used  above  is  one  in  which  the  two  integers 
involved  are  both  positive  ;  and  the  fractional  number  is 
defined  in  that  case  to  be  also  positive — in  accordance  with 
the  principles  of  "  sign"  established  in  §  14  (ii.).  When  one  of 
the  integers  is  positive  and  the  other  negative,  the  fractional 
number  is  defined  to  be  negative^  ;  when  both  integers  are 
negative,  it  is  again  positive. 
Two  rational  numbers  such  as  +5/3  and  +3/5  (or  —5/3 

and  —3/5)  are  said  to  bo  "  reciprocal." 
(iv.)  From  the  definition  of  the  Fractional  Numbers,  and  the 

*  See  At 

t  See  Note  on  the  practical  application  of  the  Negative  Numbers 
at  the  end  of  this  Chapter. 
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principles   of   Association  and  Commutation,   we   have  the 
proper  definitions  of  Multiplication  and  Division — for  Rational 
Numbers  (Integral  or  Fractional).*    For  example, f 
5/3  x  7/13=  (5-r3)x  (7+-13)=(5x  7)  -  (3  x  13) =  35/39 
and 

5/3  -r  7/13  =  (5  -T-  3)  -r  (7  -r-  13)  =  (5  x  13)  -r-  (3  x  7)  =  65/21 

— types  of  processes  in  which  "  cancelling"  is  commonly  done  : 
equal  factors  in  numerator  and  denominator  expressions  being 

cancelled,   because  together  equivalent,  when   "  associated" 
together,  to  a  "  factor"  1  of  the  expression. 

The  product  of  two  "  reciprocal"  rational  numbers  =  +1  ; 
and  multiplication  by  either  is  equivalent  to  division  by  the 
other. 

(v.)  To    define    Addition    and    Subtraction    of    Rational 
Numbers,  the  Law  of  Distribution  in  Division  is  taken  as 
characteristic — giving  : — 

(1)  for  example, 

5/3  +  13/3  =  18/3  =  6  and  5/3  -  13/3  =   -  8/3 
when  the  fractions  have  the  same  denominator  ;  and 

(2)— reducing  the  general  case  to  case  (1),  by  means  of  (iii.) 
above — for  example, 

5/3+  7/13=  65/39+  21/39=  86/39, 
5/3-  11/15=  25/15-  11/15=  14/15, 

— the  "  least  common  multiple"  (L.C.M.)  of  the  original 
denominators  being  used  as  "  common  denominator"  for  the 
equivalent  fractional  forms  introduced. 

(vi.)  The  four  operations  Addition,  Subtraction,  Multi- 
plication and  Division — with  their  characteristic  Laws  of 

Commutation,  Association  and  Distribution — are  then  applic- 
able, without  restriction,  to  the  Rational  Numbers,  so  as  to 

produce  "  rational"  results.  For  this  reason,  these  four  opera- 
tions are  called  "  the  Rational  Operations." 

*  The  special  relation  of  the  Fractional  Numbers  to  the  operation 
of  Division  makes  it  simpler  to  take  Multiplication  and  Division  of  the 
Rational  Numbers  before  Addition  and  Subtraction.  See,  again, 
Ch.  VI.,  §  25  (iii.). 

f  For  the  basic  form  see  Ch.  I.,  §  5,  (ii.).  Questions  of  "  sign"  of 
the  numbers,  not  illustrated  in  sub-sections  (iv.)  and  (v.),  are  dealt  with 
on  the  principles  established  in  §  14,  (i.)  and  (ii.) 
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(vii.)  The  Rational  Numbers  have  a  new  Number  property 
of  great  mathematical  importance  —  as  follows  :  — 

Between  any  two  rational  numbers  there  is  an  infinity  of 
other  rational  numbers. 

This  is  an  immediate  consequence  of  the  principle  of  the 

"  common  denominator,"  and  of  the  fact  that  the  common 
denominator  may  be  magnified  to  any  extent  we  please.  For 
example,  to  take  an  important  special  case  :  — 

Between  0  and    +  1   there  is  no  integral  number  ;    but, 
expressing  fractionally, 
the  denominator  2  gives  0  <  J  <  1 

„     1000000  gives 

0  <  1/1000000  <  2/1000000<  •  .    <  999999/1000000  <  1, etc. 

We  note  that  if  we  take  this  process  as  far  as  we  please  in 
any  case,  and  then  take  two  of  the  intermediate  numbers 
which  seem  so  much  closer  than  the  original  ones  —  for  example, 
if  we  take  75643/1000000  and  75644/1000000—  there  is  still 
an  infinity  of  rational  numbers  between  these. 

A  system  of  numbers  which  has  this  remarkable  property 
is  said  to  be  "  dense."* 

Referring  back  to  the  example  just  used,  we  observe  that 
there  is  no  limit  to  the  nearness  to  0,  of  rational  numbers  — 

or,  to  "  smallness"  of  such  numbers.  And  the  general  fact  of 
"  denseness"  may  clearly  be  expressed  in  terms  of  "  smallness" 
of  differences.  This  is  a  principle  of  great  importance  in 
Higher  Mathematics. 

(viii.)  It  is  important  to  have  in  mind  a  scheme  of  all  the 
Rational  Numbers,  in  tabular  form  —  as  follows  :  — 
----  2,  -1,  0,  +1,  +2,... 

-2,      -},     -1,      -i,      0,       +1,       +1,       +J        +2,... 
----  2,  -£,  -J,  -1,  -|,  -J-,  0,+J,   +f,    +1,  +£,  +£,  +2,  ... 

etc. 

*  This  is  merely  n,  definition  of  the  us^  of  the  t  rra  "  dense"  in  re- 
lation to  the  Rational  Numbers.  The  precise  definition  of  '  '  densenea*  ," 

in  general,  ia  not  within  the  scope  of  this  book. 
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The  first  line  consists  of  the  Integral  Numbers ;  the  second, 
of  those  rational  numbers  which  can  be  expressed  fractionally 
with  denominator  2  ;  the  third,  similarly,  with  denominator 
3  ;  etc.  Each  line,  after  the  first,  includes  numbers  already 
tabulated  ;  in  particular,  the  Integral  Numbers  are  common 
to  all  the  lines  ;  but  each  line  also  includes  numbers  not  pre- 

viously tabulated. 
(Another  interesting  tabulation — of  less  fundamental  im- 

portance— is  as  follows  : — 
i ;    * ,  f ;    £ ,  I  >  f ;    *,*,!.*;    etc. 

characterised  by  the  fact  that  each  group  has  a  specific  sum 
of  numerator  and  denominator). 

16.  (i.)  The  Decimal  Numbers  are  a  very  important  sub- 
system of  the  Rational  Numbers  —  consisting  of  (1)  the 

Integral  Numbers  and  (2)  those  fractional  numbers  which 
can  be  expressed  with  denominators  which  are  powers  of  10. 

(ii.)  These  numbers  have  this  very  great  convenience,  that 
the  decimal  notation  for  the  Natural  Numbers  can  be  very 
simply  adapted  to  them,  and  the  elementary  rules  of  operations 
upon  the  Natural  Numbers  correspondingly  adapted — as 
foUows  :— [See  Ch.  I,  §10. 

(1)  898/10 2,  for  example,  is  written  8' 98 — the  number  of 
digits  after  "  the  decimal  point"  being  equal  to  the  exponent 
of  the  power  of  10  which  is  the  denominator  of  the  fraction  ; 

(2)  452-7-  8'98  [=  4527/10-  898/10 2 
=  (45270-  898)/102]*  =  443'72 

is  a  typical  example  of  Subtraction  (and,  so,  Addition)  ; 

(3)  4-865  x  3-27  [  -  4865/10  3  x  327/10 2 
=  4865  x  327/10  B]*=  15'90855 

is  a  typical  example  of  Multiplication. 
(Division  is  not  quite  the  same  kind  of  question,  because  it 

is  not  an  Integral  Operation  ;  but  see  §  17,  (ii.)  below). 

*  The  steps  within  the  square  brackets  may  clearly  be  omitted,  and 
replaced  by  simple  rules  for  the  placing  of  the  decimal  point. 

For  Addition  and  Subtraction,  we  may  "  reduce"  to  decimal  ex- 
pressions with  the  same  number  of  digits  before,  and  the  same  number 

of  digits  after,  the  decimal  point — by  prefixing  noughts  to  the  digits 
before  [see  §  10,  (ii.),  (3)  ],  and  affixing  noughts  to  the  digits  after,  the 
decimal  point  (this  latter,  from  the  definition,  clearly  leaving  the 
number  unchanged).  For  example,  452-7  ±  8-98  -  452-70  ±  008-98. 
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(iii.)  It  is  a  striking  mathematical  fact  that  this  Decimal 

sub-system  of  the  Rational  Numbers  is  also  a  "  dense" 
system.  The  argument  of  §15,  (vii.)  can  be  adapted  in  an 
obvious  way  to  the  Decimal  Numbers. 

17.  (i.)  In  actual  practice  nearly  all  numerical  calculation  is 
performed  in  terms  of  the  Decimal  Numbers. 

This  is  brought  about  by  the  principle  of  "  Decimal  Ap- 
proximation"— a  principle  which  is  convenient  for  use  in  pro- 

cesses dealing  with  rational  numbers,  but  practically  essential 
when  irrational  numbers  are  involved.  See  Ch.  V.,  §  20. 

The  principle  is  that  a  decimal  number  can  always  be  found 
which  differs  by  less  than  any  number,  however  small,*  we 
care  to  name,  from  a  given  real  number  ;  and  that  such 

"  approximations'"  can  be  used,  in  operations,  to  give  "  ap- 
proximate results" — the  accuracy  of  which  depends  in  a 

definite  way  on  the  degree  of  original  approximation. 

(ii.)  The   decimal   approximations  to  a  given  fractional 
number   may   be   systematically   determined   by   means    of 

"  division-transformation".     (See  Ch.  I.,  §  11). 
For  example, 

84613/327  >  258  and   <  259 
=  (846130/327)/10      >  2587/10     and  <  2588/10 

or  >  258-7          and    <  258'8 
=  (8461300/327)/102  >  25875/10 2  and  <25876/102 

or  >  258-75        and   <258'76 
and  so  on — the  process  having  no  end,  if  the  original  denomin- 

ator has  prime  factors  other  than  2  and  5.  (A  simple  standard 
way  of  setting  out  the  division  process  is  familiar). 

But  since  there  is  only  a  limited  number  of  possible  "  re- 
mainders" t  for  the  several  division-transformations  of  the 

process,  one  which  has  occurred  must  ultimately  occur  again 
in  precisely  similar  circumstances — and  all  the  steps  thereafter 
will  then  be  a  recurrence,  infinitely  repeated.  Thus  all 
fractional  numbers  which  are  not  themselves  decimal  numbers, 

have  "  infinite  recurring"  decimal  expressions.  For  example, 

47/6  =  7-83  ;     747/3500  -  -213428571  ; 

*  See   §   15,  (vii.). 
t  The  positive  integers  less  than  the  denominator. 
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(In  the  first  of  these,  since  47/6  =  235/30  =  (23'5)/3,  the 
number  of  digits  in  the  "  recurring  period"  must  be  less  than 
3  ;  it  is  actually  1 .  In  the  second,  since 

747/3500=  1494/7000=  T494/7, 
the  number  must  be  less  than  7,  and  is  therefore  as  great  as  it 
could  possibly  be). 

The  process  of  this  sub-section  may  clearly  be  adapted  to 
the  division  of  any  one  decimal  number  by  any  other.  For 
example, 

•00747  -r  3-5=  747/350000=  "00213428571. 

(iii.)  The  converse  proposition,  that  every  "  recurring 
decimal"  is  the  decimal  expression  of  a  fractional  number, 
follows  at  once  from  the  fact  that  the  recurring  period  yields 
an  infinite  Geometric  series  which  has  for  its  ratio  of  pro- 

gression a  power  of  1/10.  This  theoretical  fact  gives,  of 
course,  the  familiar  rule  for  the  conversion  from  recurring 
decimal  to  common  fraction. 

(iv.)  Decimal  approximation  is  clearly  sufficient  for  all 
purposes  of  practical  measurement — because  of  (1)  the 
"  denseness"  of  the  Decimal  Number  system,  and  (2)  the 
essentially  limited  precision  of  practical  measuring  instru- 
ments. 

18.  The  definition  of  Involution  for  exponents  which  are 

positive  integral  (or  0) — as  stated  in  §  14,  (iv.) — is  equally 
applicable  to  bases  which  are  fractional ;  for  example, 

(  _  2/3)5  =  -  32/243 
And  it  may  now  be  extended  to  negative  integral  exponents. 

For  this  purpose  we  use  the  identity  ab~c  =  ab  -r  ac, 
which  holds  if  b  and  c  are  positive  integral  and  b  >  c.  If 

b  <  c,  the  expression  ab  4-  ac  has  now  an  equivalent  1  -r  ac~b  ; 
for  example,  2  +  4  4-  2  + 9  =  1  ̂   2  + 5  =  1/32.  Hence  ab~c— so 
far  meaningless  in  this  case — is  defined  to  be  equal  to  1  4-  ac~b\ 
or  a~n  =  I/a  +  n,  if  a  represents  all  the  rational  numbers  and 
±  7i  all  the  integral  numbers  ;  for  example, 

(  -  2/3)-5  -   -  243/32. 
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It  is  then  easy  to  prove  that  the  theorems 

a*+c  =  ab  x  ac  and  ab-c  =  ab  4-  ac ;  a6  xc  =  (a6)15  -  (ae)b  ; 

(a  x  6)c  =  ac  x  6C  and   (a  4-  6)c  =  ac  4-  6C 

hold  good  for  rational  values  of  the  6ase-quantities  and 
integral  values  of  the  e:rp07ie7i£-quantities,  without  restriction. 
But  restrictions  remain  upon  the  use  of  ab^c*  because 
involution  with  fractional  exponents  has  not  yet  been  defined. 
The  extension  to  this  case  essentially  involves  irrational 
numbers. 

This   section   ends   the   discussion   of    the    principles    of 

"  Elementary"  Arithmetic  and  Algebra. 

Note  on  APPLICATION  OP  THE  NEGATIVE  NUMBERS  TO  MEASURE- 
MENT— 

Both  Positive  and  Negative  Numbers  are  required  for  the  measure- 
ment of  quantities  which  occur  in  two  "  opposite"  kinds — for  ex- 

ample, credit  and  debit,  and  quantities  of  electricity. 
Their  most  fundamental  and  most  important  use  is  geometrical, 

in  relation  to  the  two  "opposite  directions"  of  a  given  straight  line — 
or  the  two  "  opposite  senses  of  circulation"  in  a  given  plane  (which 
may  be  correlated  with  the  two  opposite  directions  "  normal"  to 
the  plane).  "  Vector  quantities,"  of  a  given  kind,  which  are 
restricted  in  direction  to  two  such  directions,  are  specifiable  by 
positive  and  negative  numbers — as  their  measures,  in  terms  of  one 
of  them  (chosen  as  unit).  The  application  of  this  principle,  in  Plane 

Geometry,  (1)  to  angles,  (2)  to  line-vectors  (or  "  directed  lengths"), 
is  the  basis  of  Elementary  Trigonometry  and  of  Plane  Analytical 
Geometry — branches  of  mathematical  science  in  which  the  Negative 
Numbers  have  equal  importance  with  the  Positive  Numbers. 

*  Restricted  here  to  integral  values  (positive  or  negative)  of  64  e, ae  well  as  of  b  and  c. 



PART  II. 

THE  REAL  NUMBERS 
AND 

THE  COMPLEX  NUMBERS. 





CHAPTER  V. 

THE  REAL  NUMBERS. 

19.  The  theory  of  the  extension  of  the  Number- system  to 
the  Irrational  Numbers  has  essential  difficulties.     But  a  good 
working  knowledge  of  these  numbers,  for  practical  purposes, 
is  not  beyond  the  scope  of  the  average  student  of  Mathematics; 
and  such  a  knowledge  is  in  fact  necessary  to  any  sound  grasp 
of  modern  mathematical  ideas. 

Three  things  discussed  in  previous  sections  pave  the  way 
for  this  more  difficult  step  : — 

(1)  The  principle  that  numbers  actually  exist  to  correspond 
with  the  demands  of  the  several  inverse  operations  :    the 
Integral  Numbers  satisfying  the  need  of  Subtraction  ;    the 
Rational   Numbers,  of  Subtraction   and   Division.     We   are 
led  to  expect  something  of  the  same  kind  when  we  take 
account  further  of  Evolution  and  Logarithmation. 

(2)  The  principle  of  "  Measurement,"  by  numbers  ;  or  the 
principle  of  Ratio. 

(3)  The  principle  of  Decimal  Approximation — to  numbers 
which  are  not  themselves  decimal  numbers. 

The  theory  of  the  Integral,  and  of  the  Rational,  Numbers  is 
based  directly  on  the  first  of  these  principles.  Their  practical 
importance  is  chiefly  a  consequence  of  the  second. 

But  while  "  the  Real  Numbers"  do  in  fact  go  a  long  way 
(if  not  all  the  way)  to  meet  the  need  of  the  last  two  inverse 
operations,  they  are  not  so  closely  or  directly  related  to  them. 
They  are  defined  in  terms  of  the  second  principle — that  of 
Ratio — by  means  of  the  third — that  of  Approximation,  which 
has  so  far  been  expressed  only  decimally,  but  is  now  to  be 
expressed  rationally. 

20.  (i.)  The  Fractional  Numbers,  supplementing  the  Integral 
Numbers,   were   the   first   requirement   of   the   principle    of 
Measurement.      But   it  is   easy  to   see   that — theoretically, 
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at  any  rate — they  are  not  altogether  sufficient  to  meet  that 
need.  For  instance,  an  elementary  geometrical  proof  can  be 
given  of  the  fact  that  no  rational  number  exists  which  is  the 
ratio  of  diagonal  to  side  of  a  square.  More  generally,  if 
O  and  A  are  given  points  and  P  a  variable  point  collinear 
with  them,  positions  of  P  can,  of  course,  be  specified  for  all 
rational  values  of  the  ratio  OP:  OA*\  but  it  is  not,  con- 

versely, true  that  a  position  of  P,  chosen  at  random  on  the 

line,  necessarily  gives  a  rational  number  as  "  ratio  OP  :  OA" 
(if,  indeed,  such  a  "  ratio"  exists  in  that  case).  The  "  dense- 
ness"  of  the  Rational  Number  system  ensures  that  we  can  get 
as  near  as  we  like  to  any  chosen  position  of  P  by  means  of 
rational  values  for  the  ratio  OP  :  OA  ;  but  it  does  not  ensure 
that  we  shall  actually  get,  in  that  way,  to  that  position  :  we 
may  or  may  not  be  able  to  do  so. 

This  illustration,  by  points  on  a  straight  line,  is  in  fact  of 
the  very  essence  of  the  question  under  consideration.  The 
continuity  of  the  straight  line  is  something  more  than  the 
denseness  of  points  (P)  determined — from  two  given  points 
O  and  A  on  it — by  rational  values  of  OP  :  OA.  And  the 
Irrational  Numbers  are  the  "  numbers"  required  to  complete 
the  relationship  between  the  positions  of  P  and  the  ratio 
OP  :  OA.  Thus  the  system  of  Real  Numbers  (rational  and 

irrational)  is  more  than  "  dense"  ;  it  is  a  "  continuous"  system. 

(ii.)  This  approach  to  the  Irrational  Numbers,  by  the 
principle  of  Ratio,  does  not  establish  the  existence  of  such 

"  numbers"  ;  but  it  indicates  their  significance  if  we  take 
their  mathematical  existence  for  granted,  in  advance.  It 
arrives  at  these  numbers  by  a  kind  of  instinct  or  intuition — 
the  natural  way,  and  the  actual  historical  way,  of  arriving  at 
most  of  the  important  fundamental  facts  of  mathematical 
science,  f 

*  When  the  ratio  is  positive,  the  direction  of  OP  is  the  same  as 
that  of  OA  ;  when  negative,  the  two  directions  are  opposite  [See 

Jit  the  end  of  Ch.  IV.,  p.  28]. 
f  Practically  all  elementary  knowledge  of  the  Infinitesimal  Calculus 

(of  which  the  subject-matter  is  the  continuity  of  the  Real  Number 
system)  has  been  built  on  this  particular  intuition — facilitated  by  the 
device  of  equating  number-quantities  to  geometrical  quantities  :  for 
instance,  x  -  OM,  y-/(z)-MP 
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The  mathematical  justification  for  this  new  use  of  the  term 

"  number"  turns  upon  the  possibility  of  defining  operations 
of  Addition,  Subtraction,  Multiplication  and  Division,  to 
correspond — and  operations  of  the  other  three  kinds,  when  we 
come  to  regard  them  as  independent  of  these.  This  is  where 
we  bring  the  third  principle  of  §  19  into  play. 

(iii.)  On  the  line  OA,  used  in  (i.),  a  point  chosen  at  random 
is  either  (1)  a  position  of  P  for  which  OP  :  OA  is  a  rational 
number,  or  (2)  it  must  separate  all  the  points  so  related  to  the 
rational  numbers  into  two  classes — those  to  one  side  of  it  and 
those  to  the  other. 

Hence  in  case  (2)  we  have — instead  of  the  rational  number 
OP  :  OA — a  separation  of  all  the  Rational  Numbers*  into  two 
classes,  say  Cl  and  C2,  such  that  those  of  the  class  GI  are  all 
less  than  those  of  the  class  <72  ;  and  this  separation  is,  on 
account  of  the  "  denseness"  of  the  "  Rational  Points"  on  the 
line,  such  that  there  is  neither  a  greatest  rational  number  of  the 
class  C1  nor  a  least  of  the  class  C2.  (A  terminal  of  either  class 
would,  by  hypothesis,  give  a  point  to  one  side  or  other  of  the 
position  of  P  in  question — that  is,  at  a  finite  distance  from  it — 
and  therefore  such  that  an  infinity  of  "  rational  points"  could 
be  located  between  :  "  which  is  absurd.") 

As  such  separations  of  the  "  Rational  Points"  on  the  line 
OA  are  determined  by  points  which  are  not  themselves 

"  rational,"  so  (conversely)  such  separations  of  the  Rational 
Numbers  are  used  to  determine  the  Irrational  Numbers  ;  and 
it  is  in  terms  of  them  that  operations  of  Addition  and  Multi- 

plication are  defined,  and  inversely  of  Subtraction  and  Divis- 
ion— primarily  for  positive  "  real"  numbers  (rational  or 

irrational),  and  then  (by  an  obvious  transition)  for  all  the 
Real  Numbers.  But  the  details  of  the  processes  are  neither 
simple  nor  elementary  ;  and  the  whole  subject  would  there- 

fore have  to  be  regarded  as  beyond  the  range  of  elementary 
discussion  but  for  the  following  facts  : — 

(iv.)  (1)  The  processes  of  Decimal  Approximation  dis- 
cussed in  §17  are,  in  fact,  systematic  processes  of  separating 

*  The  term  "  separation"  is  used  in  this  book  as  the  most  satis- 
factory equivalent  of  Dedekind's  term  schnitt. 

For  a  clear  conception  of  "  all  the  Rational  Numbers,"  the  reader  is 
recommended  to  have  in  mind  the  tabulation  of  Ch.  IV.,  §15,  (viii.). 
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all  the  Decimal  Numbers  into  classes  which  may  be  described, 
for  these  numbers,  exactly  as  the  classes  Cl  and  C2  are  de- 

scribed in  (iii.).  For  example,  when  we  write 

( N  =  )  747/35  =  21-34*28571 we  mean  that 

21  <  N  <  22  ;  21  3  <  N  <  21-4  ;  21-34  <  .V  <  21-35  ;  .  .   .   . 
.  .  .  21  -3428571428 <N<  21-3428571429;   

— separating  first  the  integral  numbers  ;  then  the  decimal 
numbers  of  denominator  10  ;  and  so  on.  And  it  is  possible 
to  say,  of  any  specified  decimal  number,  whether  it  belongs 
to  the  <7i  class  or  to  the  (72  class. 

This  means  that  the  use  of  decimal  approximations  in 
algebraic  operations  can  equally  well  be  regarded  as  the  use  of 

decimal  "  separations"  ;  and  it  therefore  means  that  we  have 
some  actual  experience  upon  which  to  build  the  more  general 
ideas  required  for  irrational  number  theory. 

In  this  connection  it  is  most  important  to  study  closely  the 
use  of  decimal  approximations  in  operations  of  addition, 
subtraction,  multiplication  and  division — more  especially  of 
the  two  "  inverse"  operations — with  a  view  to  determining 
the  degree  of  approximation  of  the  results.* 

(2)  Still  more  to  the  point  is  the  fact  that  the  Irrational 
Numbers  can  be  determined  just  as  precisely  by  separations  of 
the  Decimal  Numbers  as  by  separations  of  all  the  Rational 
Numbers. 

It  is  the  denseness  of  the  separated  system  that  is  the 
determining  circumstance ;  and  the  dense  sub-system  is 
just  as  good,  for  this  purpose,  as  the  dense  system  of  which  it 
is  a  part.  The  proof  consists  in  showing  that  two  different 
separations  of  the  Rational  Numbers  (giving  different  ir- 

rational numbers)  imp)}7  two  different  separations,  also,  of  the 
Decimal  Numbers — the  converse  being  obviously  true. 

The  "  irrational"  separations  of  the  Rational  Numbers  have, 
as  essential  characteristic  [See  (iii.)  above],  no  terminal  rationals 

*  r|  ho    best   penor.!  0,   in    applying   the   most 
elementary  '%e  also  "  A  New  Algebra,"  by 
Barnard  and  Child.  Yul.  II.,  Ch.  XX VIII.  (and  following  chapters). 
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at  the  point  of  separation.  But,  while  cc  irrational"  separa- tions of  the  Decimal  Numbers  have  also  this  characteristic, 
it  is  not  conversely  true  that  Decimal  separations  with  this 
characteristic  necessarily  give  irrational  numbers.  They  may 
give  non-decimal  rational  numbers  [See  Ch.  IV.,  §  17  (ii.)]. 
We  know  that  in  that  case  the  decimal  expressions  "  recur" ; and  that  is  an  essential  distinction  between  rational  and 
irrational  numbers  ;  but  it  is  a  distinction  of  a  secondary 
kind,  which  has  not  the  same  theoretical  importance  as  the 
fundamental  distinction  between  all  the  Rational  Numbers 
and  all  the  Irrational  Numbers. 

(v.)  The  important  point,  however,  for  the  present  dis- 
cussion is  that  "  Decimal  Approximation"  is  just  as  applicable to  the  Irrational  Numbers  as  it  is  to  the  Rational  Numbers. 

It  is  this  very  practical  fact  which  makes  the  transition, 
from  the  comparatively  elementary  Rational  Numbers  to  the 
theoretically  abstruse  Irrational  Numbers,  relatively  easy — 
so  easy,  in  fact,  that  the  step  is  commonly  taken  without  any 
consciousness  at  all  of  the  essential  underlying  difficulty. 

Just  because  of  the  ease  of  this  transition,  however,  it 

seems  important  to  emphasise  the  fact  that  "  approximation" 
is  without  meaning  except  by  reference  to  something  "exact," 
to  (or  towards)  which  one  is  approximating.  It  is  essential 
to  accurate  mathematical  thought  to  realise  that  an  irrational 

number  is  just  as  precise  and  definite  a  "  number"  as  an 
integral  or  a  fractional  number.  This  precision  is,  of  course, 
most  clearly  realised  by  reference  to  the  points  on  a  straight 
line  0  A,  which  correspond  indifferently  to  the  Rational  and 
the  Irrational  Numbers. 

(vi.)  We  shall  proceed  on  the  assumption  that  enough  has 

been  stated  to  explain  the  "  existence"  of  the  system  of  Real 
Numbers,  Rational  and  Irrational,  subject  to  properly  defined 
operations  of  Addition,  Subtraction,  Multiplication  and 
Division — with  their  Laws  of  Commutation,  Association  and 
Distribution. 

The  actual  definitions  of  the  four  Rational  Operations  as 
applied  to  the  Real  Numbers,  in  general,  are  precise  mathe- 

matical forms — involving  some  considerable  difficulties  in 
detail — corresponding  to  the  common-sense  uses  of  decimal 
approximations  to  wiiicii  icierence  has  been  made  in  (iv.),  (i) 
above. 
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practical  needs  are  met  by  the  fact  that  decimal 
approximations,  to  any  required  degree  of  accuracy,  can 
always  be  obtained — and  used  (with  error  of  known  order) 
in  place  of  the  real  numbers  actually  in  question. 

21.  (i.)  In  terms  of  irrational  numbers  we  can  now  take  the 
main  step  in  the  removal  of  restrictions  from  the  operation  of 
Evolution. 

If  a  positive  rational  number,  a,  has  not  a  rational  nth  root 
— as,  for  example,  +47,  or  +47/6,  has  not  a  rational  13{A 
root — a  separation  of  all  the  positive  rational  numbers  can  be 
made,  into  those  (the  class  C-^  of  which  the  ntfl  powers  are  less, 
and  those  (the  class  (72)  of  which  the  nth  powers  are  greater 
than  a  ;  that  is  to  say,  it  can  be  determined  of  any  named 
positive  rational  number  whether  it  is  of  the  class  CL  or  of 
the  class  (72.  And  this  separation  gives  a  positive  irrational 
number,  which  can  be  proved  (by  multiplication*)  to  have  its 
nth  power  equal  to  a. 

Thus  Evolution,  denoted  by  y'af,  is  defined,  in  terms  of 
positive  real  numbers,  for  positive  rational  values  of  a.  And 
we  note,  in  passing,  that  if  n  is  even,  the  opposite  negative 
real  number  is  also  such  that  its  nth  power  =  a  (by  the  laws 
of  sign,  in  Multiplication).  If  a  is  negative,  we  have  (by  these 
same  laws)  a  negative  real  nth  root  if  n  is  odd  ;  but  if  n  is  even, 
there  is  no  real  nth  root.  This  case  of  ̂ /a,  when  a  is  negative 
and  n  even,  remains  as  an  important  restriction  upon  the 
operation.  We  shall  find  that  the  removal  of  it  brings  us  to 
the  final  stage  of  the  Number  theory  ;  and  we  shall  find  that 
the  other  side-issues  just  mentioned  are  more  nearly  related 
to  it  than  to  the  primary  case.  [See  Ch.  VI.,  §  27,  (i.),  (3).] 

Taking  the  simplest  cases  of  Evolution,  we  have — 
%/(  +  1)  =  +1,  for  all  values  of  n  (and  —  1,  when  n  is  even) ; 
y  ( +  2)  is  irrational  for  all  the  values  2,  3,  4,  •  •  •  •  of  n  ; 

*  Proofs  of  such  propositions  are  essentially  dilTicult,  because  of  the 
essential  difficulty  of  the  exact  theory  of  the  operations  with  irrational 
numbers. 

"j*  -y/  is  best  thought  of  as  a  composite  symbol  (  ̂/,  ̂/,  -y/,  •  •  •  ). 

If  ̂ / a  —  6,  then  a  —  b Jrn;  for  example,  if  %/  a  —  6,  a  ••  6+  6.  As  we shall  see,  it  is  never  generalised  beyond  this  case.  [§22,  (iii.)  ]. 
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so,  ty  (+  3) ;  -J/  (4-4)  =  ±  2,  but  ̂   ( +  4)  otherwise  ir- 
rational ;  fy(  +  5)  always  irrational ;  and  so  on.  The  ir- 
rational numbers  of  this  kind  are  commonly  called  "  surd- 

numbers"  ;  but  the  term  "  surd"  appears  to  have  been  over- 
emphasised in  Elementary  Algebra  ;  it  is  a  survival  of  days 

when  these  numbers  were  not  realised  as  "  part  and  parcel" 
of  a  more  general  system.* 

There  are  a  variety  of  possible  ways  of  determining  the 

Decimal  separations  for  %/a,  such  as  ̂ /3  =  1-732  ....*.. 
(for  square  roots,  the  process  of  §  11,  (iii )  may  be  adapted)  ; 
but  in  practice  the  general  problem  is  reducible  to  one  of 
logarithms,  of  which  the  tabulation  has  very  great  and  far- 
reaching  practical  importance.  The  operation  of  Logarith- 
mation,  in  fact,  quite  overshadows — though  it  does  not 
altogether  supersede — the  operation  of  Evolution,  in  the 
final  developments  of  the  Number  theory.  [See  §§22-3]. 

(ii.)  The  principles  applied  to  the  determination  of  tya, 
when  a  is  rational,  apply  equally  well  when  a  is  irrational  ; 
for  example,  %/  fy  ( +  7)  is  a  perfectly  definite  irrational 

number.  And,  in  fact,  a  positive  "  real"  value  for  tya  always 
exists  when  a  is  "  real"  and  positive. 

(iii.)  The  following  Evolution  theorems — for  which  it  is 
sufficient  (as  a  foundation)  to  confine  ourselves  to  positive 
real  quantities  throughout  —  are  corollaries |  to  foregoing  prin- 

ciples : — 

(1)  ty(a  x  &)  =  %/a  x  tyb  and  ty  (a~  6)  =  %/a  H-  tyb 
for  example,          ̂ (  +  10)  =  ̂   ( +  2)  x  fy(  +  5), 
and  -K+2/5H  -v/(+2)/^  (  +  5). 

(2)  ̂ /  ̂   a  =  ̂   a  =  fyya,      if      p  =  m.n=n.m\ 

for  example,         ̂   .*/(  +  7)  =  ty(  +  7)  =  fy  ̂(  +  7). 
(The  equality  of  nth  powers  in  case  (1),  of  pth  powers  in 

case  (2),  is  sufficient  for  the  truth  of  these  propositions — since 

*  Surd-numbers  belong  to  an  important  sub-system  of  the  Real 
Numbers,  called  "  the  Algebraic  Numbers" — being  all  the  real  numbers 
which  can  be  specified  as  roots  of  "  Algebraic  Equations"  i.e., 
equations  of  the  type  an.*n  +  an.i-***"1  +   +  o,^.x  +  a0  =0, in  which  the  coefficients  are  integral. 

t  These  corollaries  raise  again,  of  course,  the  fundamental  difficulties 
of  §  20. 
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these  quantities  have  each,  in  case  (1),  only  one  positive  nih 
root,  —  and  so  on). 

22.  (i.)  The  generalisation  of  Evolution  enables  us  to  extend 
Involution  to  fractional  exponents. 

(1)  For  this  purpose  we  use  the  identity  a*  m/w  =  '<j/a±m, 
which  we  know  to  be  true  if  ±m/n  is  a  fractional  expression 
for  an  integral  number  [See  §§9,  14  (iv.),  18]  ;  for  example, 

(47/6)-3  =  (47/6)-ii2/4  -  ̂   (47/6)-12=  ̂   (6/47)  +  12.  Using 
now  the  further  fact  that  the  expression  ̂ /a±m  has  been 
generally  defined  (§  21)  for  positive  real  values  of  a  (the  power 
of  a  involved  in  it  having  a  positive  or  negative  integral 

exponent  denoted  by  ±m)t  we  define  a±m/n,  when  the 
exponent  is  actually  a  fractional  number,  to  have  a  positive  real 

value  given  by  fya±m  when  a  itself  is  real  and  positive. 

(2)  It  is  easy  to  see  that  all  the  fractional  expressions  for  a 
given  rational  exponent,  r,  (integral  or  fractional)  yield  the 

same  positive  real  value  for  ar  ;    for  a^K'mllC'n=  k'^/  (a^k'm) 
=  V  fy  (a±m)+  *  -  ̂ a±w—  see  §§  18  and  21,  (iii.)—  k,  m,  n 
denoting  representative  natural  number  "  figures"  [See  foot- 

note to  §  21  (i.),  p.  36,  on  the  composite  symbol  y']. 

(3)  Further  (%/a)±m  yields  the  same  positive  real  value; 
for  its  nth  power  =  ((^a)  +  w)±m  —  see  §  18—  that  is,  a±m  ; 
and  there  is  only  one  positive  real  number  of  which  this  is 
true. 

(ii.)  It  is  then  easy  to  prove  that  for  positive  real  values  of  the 

"  bases"  and  positive  real  values  of  the  "  powers"  —  but  rational 
values  (integral  or  fractional,  positive  or  negative)  of  the 

"  exponents"  —  the  Involution  theorems  hold  ;  namely, 
(1)  ab  +  c   =  abxac   and    ab~c=ab^ac\ 

(•2)  abxc   =  (ab)c       and    ab  +  c=  ab  xc/  =  (a&)c',  if  r.c'  =  1  ; 
(3)  (a  x  6)c-  ac  x  bc  and    (a  +  b)c  =  ac  +  bc. 

The  mode  of  proof  is  simple,  as  follows  :  —  If  ±  M/N  be  the 
reduced  fractional  form  of  (1)  6  ±  c  or  (2)  6  J  c  or  (3)  c,  as 

thn  case  may  be,  the  relation,  say  P  =  Q,  holds  if  P    N  =-  Q   N 
holds  ;  and  this  latter  is,  in  each  case,  reducible  to  the  theorems 
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of  §  18  (on  Involution  with  integral  exponents}.    For  example, 

if  6  =  +  2/3   and    c  =   -  5/7, 

ab  +  c=  a-i4/i5=  P      and  (0B)c/=  (a  +  2/3)-7/5  -  Q  ; 
therefore,  p  +  15=cr14,  and 

In  this  example,  the  original  numerators  and  denominators 

(of  6  and  c)  have  been  taken  "  prime."  The  modifications 
which  naturally  enter  when  "  cancelling"  occurs  are  quite 
simple. 

It  cannot  be  too  strongly  emphasised  that  these  proofs,  and 

the  theory  of  this  entire  section,  turn  on  the  restriction  of  "  bases" 
and  "  powers"  (but  not  "  exponents")  to  be  positive  quantities. This  restriction  ensures  that  the  relation  between  base  and 

power  is,  in  each  case,  a  "  one-one  relation"  —  that  is,  given 
values  for  base  and  exponent,  there  is  one  and  only  one  value 
(in  question)  for  the  power  ;  and,  conversely,  given  values 
for  power  and  exponent  there  is  one  and  only  one  value  (in 

question)  for  the  base  (or  "  root).  If  this  restriction  is  strictly 
adhered  to  at  this  stage,  the  general  discussion  of  these 
operations  at  a  later  stage  —  when  we  are  in  a  position  to  dis- 

cuss them  with  complete  generality  [See  Ch.  VI.,  §  27]  —  is 
greatly  simplified.* 

(iii.)  Since  tya=  a+1/w,  by  the  definition  of  (i),  (1)—  with 
its  reference  to  positive  real  quantities  only  —  it  follows  that 
the  original  operation  of  Evolution  is  included  in  the  general- 

ised operation  of  Involution.  That  is  to  say,  the  inverse 
(Evolution)  of  Involution  with  a  positive  integral  exponent  may 

now  be  expressed  as  another  involution,  with  the  "  reciprocal'1 
exponent.  (But,  of  course,  when  we  ask  what  "  involution" means  in  these  two  cases,  the  answer  is,  in  the  first  case,  a 
special  multiplication,  in  the  second  case,  the  evolution  which 
is  defined  as  the  operation  inverse  to  that  fundamental  type  of 
involution). 

*  In  the  final  generalisation,  a  ±TO/n  has  n  different  values  (nearly  all 
"  unreal")  ;  but  the  one  positive  real  value  here  taken  account  of, 
when  a  is  real  and  positive  ,  will  be  found  basic  to  the  more  general 
treatment. 
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We  proceed  to  show  that  for  the  case  of  the  general  rational 
exponent,  the  evolution-type  of  inverse  of  an  involution  is 
another  involution — with  the  reciprocal  exponent : — 

If  a±m/n=6,      then      6=^/a±m 
•       fe+n       =  a±m   (that  iS}  a  +  m  Qr   l/a  +  m) 

Hence  a  +  m     =  b+n  or  l/6  +  n  ;    that  is,  a+m=  6±n 

a  =  ̂ /6±n=  6±n/m 

Thus  ar  =  6     and    a  =  6r' 
are  equivalent  relations,  if  r,  r'  are  rational  and  such  that 
r  x  r'  =  1,  and  if  a  and  6  are  both  restricted  (for  the  moment) 
to  be  real  and  positive.  For  example,  or8/13  =  6  and  a  =  6~13/8 
are  equivalent  in  that  sense. 

(iv.)  To  sum  up  :  (1)  An  involution  with  a  fractional 
exponent  is  denned  by  two  more  elementary  operations  (in 
either  order,  at  this  stage) — namely,  an  involution  with  an 
integral  exponent,  and  an  evolution  ;  and,  in  particular,  if  the 
exponent  is  the  reciprocal  of  a  positive  integer  the  involution 
reduces  simply  to  an  evolution. 

(2)  Involution,  thus  generalised,  includes  its  own  evolution- 
type  of  inverse — reciprocal  exponents  giving  mutually 
inverse  operations  (for  example,  er8/13  and  or13/8  are  mutually 
inverse  forms — as  a  +  3  and  fya  are).  And  this  absorption  of 
Evolution  in  a  generalised  Involution  makes  it  unnecessary*  to 
generalise  Evolution,  as  an  independent  operation. 

"  Evolution"  retains  its  original  meaning,  as  denoted  by 
V»  y/>  -v/'  '  '  '  >  while  all  the  other  operations  are  generalised, 
as  such. 

23.  We  are  now  in  a  position  to  remove  the  main  restrictions 
from  the  operation  of  Logarithmation.f 

(i.)  The  relation  ar  =  6,  as  so  far  denned  (for  rational 
values  of  r),  may  be  written  in  the  logarithmic -in  verse  form 
loga&  =  r.  But  if  positive  real  values  are  given  for  a  and  6, 
there  is  not,  in  general,  a  corresponding  rational  value  of  r. 

*  If  it  wore  necessary,  it  could,  of  course,  easily  be  done.  It  is 
important  to  realise  the  strict  scientific  economy  of  the  developments. 

f  The  absorption  of  Evolution  in  the  generalised  Involution  leaves 
Logarithmation  as  the  only  ultimately  independent  operation  inverse  to 
Involution. 
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For  example,  to  take  simple  important  cases,  if  a  ••  4-  10  and 
6  =  +  2,  +  3,   ,  4-  9  there    are    not    corresponding 
rational  values  of  r. 

We  can,  however,  in  such  cases,  separate  all  the  Rational 
Numbers  into  two  classes  GI  and  C2;  with  reference  to  a  and  6, 
in  such  a  way  that  the  rational  numbers  of  one  of  these  classes 

—when  used  as  exponents — give  "  powers  of  a"  which  are  less 
than  6,  while  those  of  the  other  class  give  powers  greater  than 
b*.  And  the  separation  so  arrived  at  determines  uniquely 
an  irrational  number,  a,  which  may  properly  be  used  to 

define  loga&  ;  that  is,  Ioga6  =  a  ;  and,  inversely,  aa  =  b 
defines  aa,  in  that  connection — but  only  as  a  restricted  inverse 
form,  derived  from  the  generalised  definition  of  Logarithma- 
tion.  We  have  not  yet  arrived  at  a  meaning  for  ab  when  6 
has  any  given  irrational  value. 

Thus  Logarithmation,  which  up  to  this  point  has  had 
practically  no  place  in  the  mathematical  system — having 
merely  been  defined  as  a  form  arising  out  of  the  Natural 
Number  principles — has  now  been  given  very  general  defini- 

tion, f  and  actually  takes  precedence  of  Involution  at  this  stage. 
It  comes,  in  fact,  in  a  certain  sense,  to  share  with  Addition 

and  Multiplication  the  character  of  a  "  direct"  and  funda- 
mental operation — as  we  shall  see  in  what  follows  [See  (iii.) 

below]. 
The  principle  of  Decimal  Approximation  is,  of  course, 

applicable  to  the  definition  of  loga&,  and  all  such  quantities 
(for  positive  values  of  a  and  6)  can  be  expressed  decimally 
to  any  required  degree  of  accuracy  ;  for  example, 

Iog103=. 477121   

(ii.)  The  Logarithmation  theorems — 
(1)  loga(&  x  c)  =  loga&  +  logac 

and      Iog0(6  -f-  c)  =  loga&  -  logac 

(2)  loga&c  =  c-l°ga&       (c  rational) 
(3)  loga&  =  Iogc6  x  Iog0c,  etc., 

in  particular,         Ioga6  x  Iog6  a=  1 
and,  therefore,       Iog06  =  Iogc6/logca 

*  As  r  increases  by  rational  values,  af  increases  if  a  >  -f  1  (decreases, 
if  0  <  a  <  +  1).  See  Appendix  IV. 

f  A  single  real  value  of  loga&  being  determined  by  given  positive 
real  values  of  a  and  6. 
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— can  then  be  proved,  with  all  the  generality  which  the  defin- 
itions, so  far  given,  make  possible — each  logarithm-quantity 

having  one  and  only  one  real  value.  The  proofs  have,  once 
again  [See  §21,  (i.),  footnote],  the  difficulties  in  detail  of  all 
fundamental  irrational  number  work. 

We  note,  before  proceeding  to  consider  the  great  practical 
importance  of  these  theorems,  that  (3)  in  its  final  form  permits 
reduction  of  all  logarithms  to  logarithms  with  a  standard 
base.  Two  particular  bases  have  special  claims  to  be  used  as 

such  standards.  One  of  these  [see  (iii.)  below]  is  the  "  radix" 
number,  10,  of  the  Decimal  Notation  ;  its  practical  usefulness 
is  of  the  very  greatest  importance.  The  other  is  an  irrational 
number — generally  denoted  by  e — which  emerges  naturally 
from  the  theory  at  a  more  advanced  stage ;  seeCh.VL,  §27,(ii.).* 

[e=  2-7182818285   ] 

(iii.)  (1 )  The  peculiar  importance  of  the  Decimal  Numbers 
— with  their  specially  simple  scheme  of  notation — makes 

"  logarithms  to  base  10"  play  a  very  important  part  in Mathematics. 

Multiplication  of  a  decimal  number  by  a  power  of  10  with 
an  integral  exponent  (positive  or  negative)  does  not  affect 
the  digits  of  its  decimal  expression  (which  we  may  suppose 
— see  end  of  §  10,  (ii.),  (3),  and  footnote  to  §  16 — to  have  as 
many  noughts  as  we  please  at  either  end),  but  merely  affects 
the  position  of  the  decimal  point  relative  to  these  digits  ; 
multiplication  by  10  moves  the  decimal  point  one  place  to  the 
right  (division,  one  to  the  left).  Hence  by  (ii.),  (1)  a  set  of 
numbers  so  related  have  logarithms  to  base  10  which  differ 
integrally. 

Thus  the  logarithms  to  base  10  of  all  (other)  decimal 
numbers  have  a  simple  relationship  to  those  of  the  decimal 
numbers  between  +  1  and  +  10.  These  latter  have 
logarithms  between  0  and  +  l.f 

*  It  is  interesting  to  compare  with  the  fact  that  in  angle-theory  there 
are  two  angles  which  have  special  claims  to  use  as  standard  units  ; 
one,  the  whole-plane  angle  (or  the  straight  angle,  or  the  right  angle),  of 
great  practical  importance  ;  the  other,  the  radian,  arising  naturally 
from  more  advanced  theoretical  considerations. 

f  Since  Iog1005  increases  with  x.     See  Appendix  TV. 
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Hence  the  logarithm  to  base  10  of  a  decimal  number  is 

expressed  as  the  sum  of  two  parts.  One,  called  "  the 
characteristic,"  is  an  integral  number  (positive  or  negative) 
which  can  be  written  down  by  inspection  from  the  position 
of  the  decimal  point — being  determined  by  the  number  of 
places  by  which  that  point  is  to  the  right  or  left  of  the  stand- 

ard position  (of  zero  characteristic).  The  other,  called  "  the 
mantissa,"  is  the  logarithm  of  a  number  between  +  1  and  +10. 
For  example, 

Iog10342-0716  =  2  +  Iogl03420716  =  2-534117   (approx.) 
loglo-003420716  =   -  3  +  Iog103-420716  ; 

=  -  3+  -534117     (approx.), 

written  "3-5341 17 
(2)  Tables  of  approximations  to  the  mantissa  quantities, 

for  the  logarithms  of  decimal  numbers  at  regular  intervals,  are 
the  practical  means  by  which  nearly  all  the  (approximate) 
arithmetical  calculations  of  Higher  Mathematics  are  per- 

formed. Such  Tables  vary  in  respect  of  the  interval,  and  of 

the  degree  of  approximation  to  the  mantissae.  "  Four- 
figure  Tables"  give  approximations  to  Iog10  1-001,  log]  0  1-002, 
•  •  •  log109-999 — approximations  which  are  (or  should  be) 
accurate  to  four  places  of  decimals.  These  are  very  con- 

venient, but  for  many  purposes  not  accurate  enough.  From 
the  more  accurate  Tables  the  logarithms  of  numbers  between 
those  of  which  the  logarithms  are  (approximately)  tabulated 
can  be  approximately  determined,  by  assuming  proportional 

increase  through  each  "  gap" — an  assumption  which  is  more 
and  more  justified  the  smaller  the  interval  of  the  Table. 

The  ideal  Table  will  clearly  be  one  for  which  the  interval*  is 
such,  and  the  degree  of  approximation  such,  that  the  pro- 

portionality in  question  gives  approximations  of  the  same 
degree  of  accuracy  as  those  actually  tabulated. 

The  actual  deter mination  of  these  approximations,  for 
tabulation,  involves  theoretical  considerations  which  are 
beyond  the  scope  of  this  discussion.  But  use  of  the  Tables  is 
quite  elementary. 

*  In  such  a  Table  different  intervals  would,  with  advantage,  be  used 
at  different  parts  of  the  tabulation. 
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The  Logarithm  Table  shares  with  the  Addition  Table 
and  the  Multiplication  Table  a  place  of  basic  importance  in  the 
processes  of  arithmetical  calculation. 

(iv.)  Even  multiplications  and  divisions  are  commonly 
performed  (approximately)  by  the  help  of  Logarithm  Tables, 
using  (ii.),  (1). 

Involutions  with  integral  exponents  are  almost  invariably 
performed  by  means  of  (ii.),  (2).  There  is  practically  no 
other  way  of  performing  evolutions — and  involutions  with 
rational  exponents. 

For  these  practical  arithmetical  processes,  since  they 
involve  the  calculating  of  a  logarithm  and  then  obtaining  the 

number  of  which  it  is  the  logarithm,  a  Table  of  "  anti- 
logarithms"  for  the  latter  step  is  more  convenient — because 
more  systematic — than  inverse  use  of  the  Logarithm  Table. 
This  is,  of  course,  an  Involution  Table,  giving  the  (approxi- 

mate) values  of  10r  for  decimal  values  (between  0  and  +1) 
of  r  at  the  regular  interval  of  the  Table. 

For  example,  [See  §  21,  (i.)]. 

logio^47=  logi^1/"^  (l/13).loglo47 
=  1-6721/13  (approx.) 
-  0-1286  (approx.) 

using  Four-Figure  Log.  Table. 
(If  the  divisor  were  a  much  larger  number,  and/or  more 

accurate  Tables  were  used,  it  might  save  time  to  make  a 
second  application  of  the  Log. — and  Anti-Log. — Tables  to 
evaluate  the  quotient — introducing,  of  course,  a  second  source 
of  inaccuracy). 

Hence  !J/47  =  1-345  (approx.),  from  the  Anti-Log.  Table. 

24.  (i.)  Involution  can  now  be  extended  to  all  irrational 
exponents. 

Using  the  facts  of  §  23,  a&,  when  a  is  real  and  positive  and  b 
irrational  (positive  or  negative),  may  be  a  positive  rational 
number,  c,  such  that  logac=  6  [§23,  (i.)].  But,  if  not,  then 
all  the  positive  rational  numbers  can  be  separated — with 
reference  to  a  and  b — into  two  classes,  GI  and  C2,  such  that  the 



THE  REAL  NUMBERS.  45 

numbers  of  one  of  these  classes  give  logarithms,  to  base  a, 
which  are  less  than  6,  while  those  of  the  other  class  give 

logarithms  greater  than  6.*  And  this  separation  determines 
a  positive  irrational  number,  a,  which  can  then  be  proved^ 
such  that  logaa  =  b — and,  therefore,  ab  =  a. 

Thus  Involution  is  theoretically  established  for  positive  real 
values  of  the  base  and  all  real  values  of  the  exponent.  (From 
the  practical  point  of  view,  of  course,  the  evaluation  of  such 

"  powers"  is  not  distinguished  from  the  case  in  which  the 
exponent  is  rational.  The  same  process  of  Decimal  Ap- 

proximation [See  §  23,  (iv.)]  applies  to  both.  But  the 
theoretical  distinction  is  theoretically  important). 

(ii.)  The  Involution  theorems  can  then  be  proved,  with 
corresponding  generality,  simply  as  converses  of  the  Log. 
theorems  of  §  23  (ii.).J  The  theorems  are — 

(1)  ab  +  c  =  ab  x  ac    and    ab~c  =  ab  +  ac 

(2)  abxc  =  (ab)c  =  (ac)b  [and  ab+c=  abxc'  if  c.c'  =  1] 
(3)  (a  x  b)c  =  ac  x  bc    and    (a  -i-  6)c  =  ac  -h  bc 

in  which  each  base  and  each  power  is  understood  to  be  real 
and  positive.  The  proof  that  p=  Q  in  each  of  these  cases 
consists  in  shewing  that  log  P  =  log  Q  —  the  base  of  these 
logarithms  being,  most  simply,  a  in  cases  (1)  and  (2),  any  base 
in  case  (3).  (Note. — The  simplicity  of  the  proof  turns — here, 
as  in  §  22,  (ii.) — on  the  uniqueness  of  the  relationship  between 
— or  the  one-one  correspondence  of — x  and  logax,  when  a  is 
given  and  x  varies,  under  the  conditions  expressly  imposed 
at  this  stage  of  the  theory). 

*  As  r  increases  by  positive  rational  values,  log^T  increases 
if  a  >  +  1  (decreases,  if  0  <  a  <  -i-  1).  See  Appendix  IV. 

|  The  proof  has  the  characteristic  difficulties  of  fundamental  work 
on  irrationals.  [See  §  21  (i.)  and  23  (ii.)  ]. 

J  The  proofs  require,  as  a  preliminary,  the  extension  of  §  23,  (ii.),  (2) 
to  the  case  of  the  general  real  exponent — as  follows  : — 

If  lc~p,  then,  by  (i.)  above,  c  =  logtp 
.'.  c  =  logap/loga?>,  by  §  23,  (ii.),  (3),    or  logap  =  c.  loga&. 



CHAPTER  VI. 

THE  COMPLEX   NUMBERS. 

25.  (i.)  The  final  development  of  the  Number  system  is 
directly  related  to  the  outstanding  restrictions  on  Evolution 
and  Logarithmation  (and  Involution). 

The  Evolution  expression,  'J/a,  has  not  been  defined  for 
a  negative  and  n  even  ;  for  example,  j/(  —  5).  And  the  second 
real  "  root"  when  a  is  positive  and  n  even  has  been  deliber- 

ately excluded  from  the  developments  of  the  immediately 
preceding  sections — so  as  to  preserve  a  certain  important 
element  of  simplicity*  (the  one-one  correspondence  between 
base  and  power,  for  a  given  exponent).  This  restriction  is  an 
essential  condition  of  the  generalisation,  thus  far  made,  of 
Involution  and  Logarithmation. 

(ii.)  It  is  easy  to  see  that  the  primary  and  fundamental 
case  of  Evolution,  for  further  extension  of  that  operation, 
is  that  of  .y/  (—  1).  If  the  development  is  to  be  of  any 
mathematical  importance  we  must  be  able  to  analyse  thus  :— 

^a=^(a'x  (-  l))  =  ̂ o'x  ̂   (-  1),    ifa=-a' 
and     ̂ (-  1)=  V\/(-  !)          ,   if  rc=  2.ra, 

reducing  to  ̂ /(—  1)  as  the  primary  problem. 

We  therefore  proceed  by  postulating  a  "  number,"  denoted 
by  i  (and  called  "iota"),  such  that  i2=  —1  — in  the  not  ill- 
founded  hope  (based  on  foregoing  experience)  that  we  shall 

find  this  number  to  have  an  actual  "  existence,"  similar  to 
that  of  the  Negative  Integral  Numbers,  the  Fractional 
Numbers  and  the  Irrational  Numbers.  (We  shall,  in  fact, 
find  that  the  principle  of  Ratio  is  equal  to  this  further  demand 
upon  it.  The  possibilities  of  Direction,  f  as  related  to  Positive 

*  There  is  a  certain  analogy  between  this  carefully  safeguarded 
simplicity,  in  relation  to  subsequent  developments,  and  that  of  the 
originally  conserved  simplicity  of  the  Natural  Numbers. 

t  See  Note  at  end  of  Ch.  IV.,  p.  28. 
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and  Negative  Numbers,  are  not  yet  exhausted  ;  and  they  can 
be  used  to  give  the  necessary  extension  to  the  conception  of 
Ratio.  But  by  far  the  greatest  importance  of  the  Complex 
Numbers  is  not  their  direct  practical  application  to  measure- 

ment of  quantities,  but  the  fact  that  they  provide  for  unre- 
stricted use  of  the  Number  Operations). 

(iii.)  The  first  requirement  of  the  inclusion  in  the  Number- 
system  of  such  a  new  number  as  i  is  that  it  shall  be  capable  of 
use,  along  with  the  Real  Numbers,  in  the  operations  which  are 
already  fully  established — namely,  the  Rational  Operations 
(Addition,  •  •  •  •  Division).  This  involves  the  further 

postulation  of  new  types  of  "  number,"  as  follows  : — 
(1)  Beginning  with  Multiplication,*  to  which  t  is  specially 

related  (by  the  defining  property  i  x  i  =  —  1),  we  have  to 
postulate  "  numbers"  represented  by  i  x  x  and  x  x  i  (defined 
to  be  equal)  for  all  real  values  of  x.  It  is  to  these  that  the 

name  "  Imaginary |  Numbers"  has  been  given.  They  may  be 
regarded  as  the  numbers  (if  we  assume  them  to  exist)  of  which 

the  "  squares"  are  negative  real  numbers.  And  they  them- 
selves may  be  qualified  as  "  positive"  or  "  negative,"  according 

as  x  has  positive  or  negative  real  values. 

On  the  general  principle  that  multiplication  by  (  4-  1)  gives 
product  equal  to  number  so  multiplied,  the  "  imaginary 
number"  (+  l).i,  written  +  t,  must  be  taken  as  the  same 
number  as  the  original  t  of  (ii.).  Thus  i  becomes  what  we 

may  call  "  the  leading  imaginary  number." 

But  since  this  basic  "  number"  of  the  new  system  was 
characterised  solely  by  the  property  that  its  "  square"  is  —1, 
and  since  that  property  is  shared  by  the  opposite  "  imaginary 
number"  (  —  l).t,  or  —  t,  we  see  that  if  we  were  to  replace  the 
original  t  by  t',  and  take  this  latter  "number"  to  be  —  t, 
the  subsequent  theory  would  be  unaffected.  We  have  thus 
the  following  important  principle  of  Unreal  Number  theory  : — 

In  any  process,  or  relation,  involving  i,  we  may  replace  t, 
throughout,  by  —  t,  without  affecting  the  validity. 

*  See   §  15  (iv.),  p.  23  footnote. 
|  Attention  has  already  been  directed  to  the  inadequacy  of  these 

technical  terms,  See  Note  to  §  12  (Ch.  II.). 
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The  further  general  principle  that  multiplication  by  0  gives 
product  also  0,  leads  to  the  definition  i  x  0  =  0  x  t  =  0  ; 
hence  to  the  fact  that  0,  which  is  the  connecting  link  between 
Positive  and  Negative  Numbers,  is  also  the  connecting 
link  between  Real  and  Unreal  Numbers. 

The  principles  of  Association  and  Commutation,  established 
as  characteristic  of  Multiplication,  yield  the  further  definitions 
that  the  product  of  a  real  number  and  an  imaginary  number  is 
an  imaginary  number  [x.(y.i)  =  (x.y).i]  ;  and  the  product 
of  two  imaginary  numbers  is  a  real  number  [(x.L).(y.i)  =  x.y.t2 
=  x.y.(-\}  =  -  x.y.]. 
In  particular,  we  have 

t3=t2Xt=    _t;    I4=(_i)2=+i;    ts=t;     etc 

(2)  For  Division,  we  have  simply  the  inverse  facts. 

Division  of  an  imaginary  number  by  a  real  number  gives  an 
imaginary  number    [x.i/y=  (x/y).i\  ;     so,  again,  of   a   real 
number  by  an  imaginary  number, 

[x/(y.i)  =  x  +  (y  x  (-l)-ri)=x-ry  +  (-l)x  i  =  (-x'y).i}\ 
and    division  of  an   imaginary   number   by   an    imaginary 
number  gives  a  real  number  [(x.i)/y.i)  =  x/y]. 

In  particular,  division  by  ±t  is  equivalent  to  multiplication 

by  :fi. 

(3)  For  Addition  and  Subtraction,  the  principle  of  Dis- 
tribution requires  definition  of  the  sum  and  difference  of  two 

imaginary    numbers    to    be    imaginary    numbers     [  x.i  ±y.i 
=  (x±y).i]. 
But  for  the  sum  and  difference  of  a  real  number  and  an 

imaginary  number  it  is  necessary  to  postulate  a  further  type 

of  "numbers,"  represented  by  x+  y.i,  or  x+  i.y,  for  real 
values  of  x  and  y.  It  is  for  these  that  the  name  "  Complex 
Numbers"  is  required.  But  this  term  is  used  for  all  the 
numbers  represented  by  x  +  i.y,  when  .r,  y  are  real,  and  there- 

fore covers,  in  particular,  both  the  Real  Numbers  [y  =  0]  and 
the  Imaginary  Numbers  [x  =  0]. 
The  Complex  Numbers  (when  their  existence  has  been 

established)  are  the  general  numbers  of  the  mathematical 
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system.  The  Unreal  Numbers  are,  of  course,  the  complex 
numbers  which  are  not  real  —  including,  in  particular,  the 
Imaginary  Numbers. 

(4)  Any  change  of  either  x  or  y  (or  both)  implies  a  change 
from  one  complex  number  to  another.  [Compare  Ch.  IV., 
§  15,  (iii.)  on  the  different  fractional  expressions  for  a  given 
rational  number.] 

For,  if  xl  +  i.ft  =  x2  +  i.yz,  then  xl  -  xz  =  i.(2/2-2/i) 

.-.  (x-xz)*  =  -(2/1-2/-2)2  or^-  *2)2+(2/i-2/2)2=0 
which  can  only  be  true  (of  real  x,  y  quantities)  if   jpj  =  x^ 
and  ft  =  2/2. 

(iv.)  (1)  In  Addition  and  Subtraction,  complex  numbers 
may  clearly    be    defined   to    give    complex   results 

[(x1  +  t.ft)  ±  (a?2  +  i.y2)  =  (xi±  x2)  +  i.^  ±  2/2)] 
(2)  For  Multiplication,  we  have,  by  these  same  principles, 

(#1  +  *.2/i)-(*2  +  1-2/2) 

=  x,.x2  +  i.(Xi.y2+  :r2.2/i)  +  i2.2/i.#2 
=  (xi.x-2-  2/1-2/2)+  t.  (#1-2/2  +  ̂ 2-2/1) 

which  gives  the  means  of  defining  this  operation,  also,  in 

"  complex"  terms. 
In  particular,   (x  +  i.y}.(x—  t-2/)=  #2  +  2/2 

and  this  "  real"  product  of  "  conjugate  complex   numbers" 
gives  the  obvious  means  of  transition  to  Division. 

(3)  Thus  for  Division  we  have, 

2  +  2/2  2) 

2/2  2)~  t.(^i-2/2- 

giving  the  means  of  defining  this  operation,  too,  in  "  complex" terms. 

(v.)  (1)  But,  for  Multiplication  and  Division,  a  simple 
transformation  —  familiar  in  Elementary  Trigonometry,  and 
still  more  familiar  in  Analytical  Geometry  —  produces  a 
striking  simplification,  which  proves  to  be  of  the  utmost 
importance  in  the  final  stages  of  the  Number  theory. 



60  THE  NUMBER  SYSTEM. 

The  transformation  in  question  is 

x  +  i.y  =  r.  (cos  9  +  t.  sin  6) 

from  the  substitution   x  =  r.  cos  9,  y  =  r.  sin  9 

whence  r2^  x2-}-  y2,       (cos  9,  sin  0)  =  (x,  y)/r 
(It   is   the   transformation   from   Cartesian   to   Polar   co 

ordinates,  in  Analytical  Geometry). 

The  simplification  resulting  from  this  transformation  is  £ 
consequence  of  the  Demoivre  identity,  namely, 

(cos  0j+  t.sin  flj).(cos  92  -f  t.sin  92) 
=  cos  (0!  +  02)  +  t.sin  (6l  +  02)  ; 

in   particular, 

(cos^-f-t.sin0).(cos0-  t.sin0)[  =  cos20  +  8in20]  =  1. 

The  function  of  9  specified  by  cos  9  4-  t.  sin  0  is  conveniently 
denoted  by  cis  9.     Thus     cis0.cis(  —  9)=  1 

(2)  If  we  write  z  =  x  +  t.  y  =  r.  cis  9,  denoting  the  "  com 
plex  variable"  by  z,  and  if  we  take  the  real  quantity  r  to  b 
positive* — for  reasons  following  upon  those  for  the  restriction 
to  positive  real  numbers  imposed  in  §§  21-4 — r  is  called  "  th 
modulus  of  z,"  and  written  mod  z  or  |z|  ;  and  the  many 
valued  9  — defined  as  circular  measure — determined  hr 

cos  9  =  x/r,  sin  9  =  y/r,  is  called  "the  Amplitude  of  z,"  am 
written  Amp  z.  A  one-valued  amplitude,  denoted  by  ̂0  an( 
written  amp  z,  can  be  defined  by  introducing  a  restriction  t< 
any  continuous  range  of  extent  2.7r  ;  the  range  taken  i; 
bounded  by  ±TT,  one  of  the  two  extremes  being  excludec 
(It  does  not  seem  to  matter  which).  This  amp  z  is  said  1  < 

"the  principal  value"  of  the  Amplitude.  The  value  is  0  to 
a  positive  real  number,  ±  TT  for  a  negative  leal  number 
+7T/2  for  a  positive  imaginary  number,  —  Tr/2  for  a  negative 
imaginary  number. 

*  Lest  it  bethought ,  by  readers  conversant  \vitli  Analytical  (JeomMr> 
that  the  rc-f' TCI K-c  to  l'«.l-ir  ( '<>-(. nli nates  ///,/>/  iver.it  may  her 
be  remarked  thi  matU  f«»r  die  restriction  arc  much  more  cogen 
in    the    present   connection.         S  ;e   an     art  Lie     by    the     writer,     ii 
The  Mathematical  Gazette,  July  1923,  p.  330. 
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(3)  From  the  expression  2  =  r.  cis  #,  we  have 

z1.z2  =  rvr-^  cis  (0,  +  02)   ,  21/2a=  r^.  cis  (6l-62). 

Thus,  modulus  of  product,  or  quotient 

=  product,  or  quotient,  of  moduli 
Amplitude  of  product,  or  quotient 

=  sum,  or  difference,  of  Amplitudes 

(the   latter   being   true   of  the   many- valued  "  Amplitude," 
not  necessarily  of  the  one- valued  "  amplitude."). 

Note  the  simplicity  of  these  forms,  as  compared  with  those 
of  (iv.),  (2)  and  (3). 

(vi.)  From  the  facts  of  (iv.)  and  (v.),  it  is  clear  that  the 
Laws  of  Association,  Commutation  and  Distribution — for  the 
Rational  Operations — will  apply,  in  their  general  forms 
[S  e  Ch.  I,  §  §  3,  5,  6],  to  "  the  complex  numbers." 

26.  (i.)  The  discussion  of  §  25  has  necessarily  been  of  a 
tentative  kind  :  a  search  after  "  numbers"  for  which  a  certain 
theoretical  need  is  realised,  but  without  that  direct  practical 
intuition  which  played  so  important  a  part  in  the  Real 
Number  development.  (A  difference  reflected  in  the  terms 

"real,"  "imaginary,"  "unreal.") 

The  actual  establishing  of  the  new  numbers  in  the  mathe- 
matical system  is  a  process  of  the  same  two-fold  kind  as  that 

used  at  previous  stages — with  somewhat  different  emphasis, 
as  indeed  the  emphasis  differed  at  these.  [See  §  15  and  §  20]. 
We  shew  first  that  the  geometrical  principles  of  §  20  have  a 
natural  extension  for  this  purpose,  based  on  the  facts  of  §25,  (v.); 
and  we  then  proceed  to  shew  that  a  complete  system  of 
operations — properly  generalised — is  applicable  to  the  new 
numbers  (made  "  tangible"  by  the  geometrical  argument). 
The  present  section  will  be  confined  to  the  first  of  these 
purposes  ;  the  second  has  some  considerable  theoretical 
difficulties,  which  cannot  be  regarded  as  elementary,  and  the 
discussion  of  it,  in  the  following  section,  will  therefore  be  to 
some  extent  summary  and  incomplete. 
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(ii.)  (1)  The  importance  of  the  transformation  of  §25  (v.) 
suggests  a  relation  of  the  Complex  Numbers  to  the  points 

of  a  Plane  system  determined  by  "  Rectangular  Cartesian 
co-ordinates"  x,  y  and  "  Polar  co-ordinates"  r,  6  — with 
reference  to  a  standard  "  origin"  0  in  the  plane  and  a  standard 
"  initial  line"  OX*  (or  OA,  if  A  be  the  point  of  the  line  cor- 

responding to  x  =  +  1,  as  in  §  20). 

The  relation  between  points  and  real  numbers,  being  given 
by  OP  :  OA  =  x,  for  positions  of  P  on  the  z-axis,  may  then 
properly  be  generalised  to  OP  :  OA  =  z,  for  all  the  points  of 

the  Plane-system — the  quantities  OA,  OP  being  "  vector 
quantities,"  of  which  the  lengths  have  ratio  r,  or  |z),  while  the 
inclination  of  the  direction  OP  to  the  direction  OA  is  the  angle 

given  by  0,  or  Amp  z.  And  z  may  therefore  be  cal'ed  the 
"  measure"  of  the  vector  OP  in  terms  of  the  unit- vector  OA. 

(2)  This  extension  to  line- vectors  of  the  conception  of 
Ratio  is  in  agreement  with  the  fundamental  principle  of 
Vector- Addition,  namely,  PQ  +  QR  =  PR,  for  any  three 
positions  of  the  points  P,  Q,  R  (or,  again,  OP  4-  OQ=  OS,  if 
OPSQ  be  a  parallelogram).  For, 

z1+  z2  =  (xl  +  xz)+  i.foj  +  */2) 

and  xi  4-  £2,  y\  4-  y>  are  the  Cartesian  co-ordinates  of  the 

point  P'  such  that  OPi  P'  P2  is  a  parallelogram.     Hence 
the  measure  of  the  vector-sum  OP ' 

=  the  sum  of  the  measures  of  OPi  and   OPa 
— a  generalisation  of  one  of  the  standard  Ratio  -theorems,  f 

In  particular,  z  =  x  +  i.y  corresponds  to  the  vector-relation 
OP=  OM+  MP=  OM+  ON  ,  if  PM,  PN  be  the  perpendicu- 

lars from  P  to  the  x-axis  and  the  y-axis,  respectively  ;  and 
the  Imaginary  Numbers  correspond  to  the  points  (N)  of 

*  OY  _j_  OX,  and  ̂ _  XOY  (or  /_  AOB,  if  we  use  the  points  on  the 
unit-circle)  is  a  positive,  rt/_ — this  defining  either  the  direction  OY  or 
the  positive  Trigonometric  sense,  according  to  order  of  procedure. 

f  A  geometrical  corollary,  of  great  importance  in  higher  theory,  is 
the  proposition  that — 

modulus  of  sum  <  (or  = )  sum  of  moduli  of  terms. 
The  algebraic  proof  is  an  interesting  exercise  in  elementary  inequality 

work. 
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the  t/-axis.  The  axes  of  reference  may  therefore  be  called, 

respectively,  "the  Real  axis"  and  "  the  Imaginary  axis"  of  the 
geometrical  representation. 

(3)  The  ratio  of  any  two  line-vectors  of  a  Plane  system  may 
then  clearly  be  defined  as  a  complex  number,  namely,  that 
which  has  the  ratio  of  then*  lengths  as  modulus  and  the 
inclination  of  their  directions  as  Amplitude-angle.  And  the 
relation 

V«2  =  (riA2)-  cis  (dl  -  02) 
may  then  be  interpreted  as  the  generalised  Ratio-theorem — 
The  ratio  of  two  line-vectors  =  the  quotient  of  their  measures.* 
These  geometrical  principles  are  clearly  sufficient  to  put  the 

(so-called)  "Unreal  Numbers"  on  much  the  same  Number 
footing  as  the  Real  Numbers.  And  they  have  commonly 
been  used,  in  some  form,  as  the  approach  to  the  Unreal 

Numbers  (by  means  of  "  the  Argand  Diagram" — the  name 
originally  given,  on  account  of  the  originator,  to  the  element- 

ary figure  of  (ii.),  in  this  connection).  But  this  is  over- 
emphasis of  the  geometrical  aspect  of  the  question ;  for  the 

use  of  complex  numbers  in  vector  theory  appears,  in  fact,  to 
be  relatively  unimportant,  f  It  puts  the  theory  of  these 
numbers  upon  a  somewhat  artificial  basis.  It  is  neither 
necessary  nor  desirable  to  have  an  essential  geometrical 
reference  in  all  uses  of  the  Unreal  Numbers. J  [See  Note  on 

"  Vector  Analysis  "  at  the  end  of  this  Chapter]. 

27.  Returning  to  the  Number  processes — 
(i.)  (1)  For  Involution  with  integral  exponents  we  have 

z+n=  r+n.cisn.6 

and  z~n  =  l/z+n  =  r~n.  cis  ( -  ».0) 

*  These  generalised  Ratio -theorems  may  then,  of  course,  be  applied 
to  two  vectors  of  any  one  kind,  for  example,  velocities  or  forces, 
belonging  to  a  given  Plane  system. 

f  For  some  interesting  "  Geometrical  and  Kinematical  Illustrations" 
see  a  paper  on  the  subject  by  Prof.  R.  W.  Genese  in  the  Mathematica 
Gazette,  May  1923. 

J  The  Complex  Variable  work  in  Alternating  Current  theory  is  com- 
monly marred  by  an  over-emphasis  on  the  geometrical  specification 

of  complex  numbers. 
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by  §  25,  (v.)  —  the  different  values  of  8  giving  all,  of  course,  the 
same  value  of  the  "  power." 

(2)  For  Evolution,  if  z=  w+n    and   w=  p.  cis  cf>  ,  we  have 
r.  cis  9  ==  p+n.  cis  n.cf)  ,  by  (1) 

.'.  *r=/o  +  w  ,  giving   p  =  yr    as    defined   in    §21, 
and  cis  9  =  cis  n.(/>  ,  from  which  —  on  account  of  the  many- 
valuedness  of  6  and  <f>  —  we  have  a  number  of  different  values 
of  cis  <£  ,  namely, 

cis#0/w,  cis(00±  2.ir)/n,  cis(#0  ±  4.7r)/w,   ..... 
It   is  easy  to  see  that  there  are  n  different  values  of  cis  <£ 

(which    repeat   themselves    in    "  periods")    and,    therefore, 
n  different  values  of  w  —  all  included  in 

(3)  The  relation  just  stated  makes  it  convenient  to  dis- 
tinguish between  fyr  and  r+1/n,  keeping  the  former  for  the 

positive  real  quantity  (r  being  real  and  positive)  defined  in 
§  21,  while  the  latter  has  n  values  given  by 

r  +  1/n  =   ̂ r.cis2.k.7T/n,  for  integral  values  of  k. 
The  n  different  quantities  cis  (2.k.7r/n)  are  clearly  the 

n  values  of  (  +  1)  +  1/n  ;  and  since  cis  (2.k.7r/n)  =  (cis  2.7r/n)k, 
these  n  "  ntn  roots  of  unity"  may  be  written, 

co°  (=  +  1),  co,  a>2,  -   •  •  a)71-1 
if  a*  =  cis  2.7T/n=  cos  2.7r//i+  t.  sin  2TT/n. 

Again,     cis  8/n  =  cis(00  +  2.k.ir)/n  =  cis  6Q/n.  cis  (2.k.7r/n) 
and  .'.       «+i/»=       r.  cis  ̂ n. 

denoting    by  [z  +  1/n]  the   one-valued   "power"  obtained    by 
using  the  principal  amplitude,  00,  of  z  (and  said  to  give  "  the 
principal  value  of  z+1/n  ")  —  so  that,  in  particular, r       and 

We  note  the  special  importance  of  the  theory  of  the  single 
positive  real  nth  root  of  a  positive  real  number  (§  21),  and 
how  that  theory,  in  its  application  to  the  modulus  of  the 
complex  number  in  the  general  case,  is  basic  to  the  more 

*  See  §25,  (iii.),  (4),  and  (v.),  from  which,  if  z1  —  za, 
r.A    and    cia  6^  =  cis0a. 
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general  theory.  We  see  that  it  is  not,  in  the  particular  case, 
the  only  nth  root,  nor  one  of  two  (when  n  is  even)  ;  it  is  one 
of  n,  of  which  the  rest  are  all  —  or  all  but  one  —  unreal.  And 
we  see,  further,  why  it  was  properly  regarded  as  being  in  a 
different  category  from  the  single  negative  real  nih  root  of  a, 
when  a  is  negative  and  n  odd  (a  root  which  is  not  the 

"  principal"  ntfl  root  in  that  case). 
(4)  It  is  convenient  to  insert  here  a  note  to  the  effect  that 

the  facts  of  (2)  and  (3)  —  expressed  in  the  form  that  the 
equation  zn  =  c  has  n  different  roots  —  may  be  regarded  as 
a  particular  case  of  the  important  general  theorem  that  an 

algebraic  equation  of  the  nth  degree  has  n  roots  —  real  or  unreal, 
and  not  necessarily  all  unequal  :    more  precisely,    that    a 
polynomial  in  z  of  degree  n  has  n  factors  of  the  1st  degree  (not 
necessarily  unequal). 

The  proof  that  there  are  just  n  is  simple  (and  familiar), 
when  once  it  has  been  established  that  such  an  equation  has 
necessarily  a  root  (or  roots).  But  none  of  the  standard  proofs 
of  this  latter  fundamental  theorem  are  simple. 

(5)  For  Involution  with  fractional  exponents  we  use  the 
definition  (See  Ch.  V.,  §  22). 

This  expression,  by  (I)  and  (2),  gives  n  different  values. 
Hence  the  different  fractional  expressions  of  a  given  fractional 
number  are  not  equivalent  in  their  most  general  use  as  ex- 

ponents —  though  not,  of  course,  giving  altogether  different 
results. 

For  this  reason  it  is  necessary  to  restrict  the  definition  of 
z*t  for  a  given  fractional  exponent  /,  to  mean  what  is  given 
by  the  above  relation  when  ±m/n  is  the  irreducible  fractional 
expression  for/  (i.e.  when  ra,  n  are  prime  to  one  another). 

The  commuted  form  (z+l/n)^m  may  then  be  shown  equiva- 
lent (it  is  not,  apart  from  the  restriction).  And  both  forms 

give  n  values  specifiable  by 

2/==  fyr±m.  cis  (  ±  m.d/n). 

The  "  principal  power"  is  that  which  comes  from  the  prin- 
cipal amplitude,  00,  of  z,  namely 

[zf]  =  'j/r±m.   cis  (  ±  m.00/n). 
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(6)  For  Involution  with  irrational  exponents  the  definition 
may  then  clearly  be  extended  in  the  form 

z°  =  [r°].cisa.0  =  [za].(+l)a 

if  [r°]  denote  the  positiA  e  real  quantity  given  by  §  24 
and  [z°],  the  "  principal  power,"  =  [ra].cis  a.00- 

This  function  of  z,  specified  by  z°,  has  an  infinity  of  values, 
corresponding  to  the  infinity  of  values  of  the  Amplitude,  6, 
of  z. 

(7)  Thus,  for  all  real  values  of  the  exponent  a,  we  have 

z°  =  [r°]  .  cis  a.d  ;    [z°]  =  [r°]  .  cis  a.00  ; 
in  which  [ra]  is  as  given  by  the  restricted  theory  of  §§  22,  24. 

The  complication  of  the  many-valuedness  (the  number  of 
values  being  anything  from  1  to  oo )  is  of  less  significance  than 
might  appear,  because  of  the  comparatively  simple  relation 
of  all  the  other  values  to  the  principal  value. 

(ii.)  The  further,  and  final,  development  of  the  Number 
theory — to  Involution  with  unreal  exponents,  and  Logarith- 
mation  with  both  elements  complex — turns  on  the  theory  of 
the  "  Exponential  Function." 

In  this  theory,  which  is  neither  elementary  nor  simple  in 

detail,  it  is  shewn  (by  one  means  or  another*)  that  if 
E  (z)  =  1  +  z  +  z2/2  !  +  z3/3  !•+•••    ad   inf. 

— an  infinite  series  which  is  "  convergent"  for  all  values  of  z — 
then — 

(1)  When    x    is    real,      E(x)=[ex]     and  E(i.x)  =  cis  x, 
if         e=E(l)=  1+ 1+ 1/2!+ 1/3!+  •  -  •  ad    inf.— 
a  positive  real  number  (2-7182818285  •  •  •  •  )   which   may 
easily  be  proved  irrational. 

And  the  "  Addition-theorem"  (obvious  in  these  particular 
cases)  E(zj  +  z2)  =  E(zx)  x  E(z2) 
is  a  general  theorem  ;  whence,  in  particular, 

E(z)  =  E(x  +  i.y)  =  E(x).  E(i.y)  =  [e*].  cis  y 

*  There  is  a  variety  of  modes  of  procedure.  The  writer  has  stated 
that  which  he  prefers  in  a  paper  contributed  to  The  Mathematical 
Gazette,  October,  1906. 
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giving  [e*],  or  E(#),  as  modulus,  and  y  as  an  Amplitude 
quantity,  for  the  complex  quantity  specified  by  E(z). 

(2)  The  inverse,  functional  expression,  denoted  by  L(z), 
such  that  if  w=  L(z)  then  z  =  E(w),  may  then  be  simply 
obtained  in  standard  complex  form.  For,  if  w=  u+  i.v,  we 
have  E  (u).  cis  v  =  z,  and  therefore 

E(u)  =  [eu]  =  |z|  =  r      and      cis  v  =  cis  9 
and  u  =  loger,  as  defined  (for  positive  real  quantities)  in  §  23. 
Hence  we  have,  for  general  specification  of  the  L-function 

L  (z)  =  loger  +  i.d  =  loge|z|  +  i.  Amp  z 
specifying  a  function  of  z  with,  again,  an  infinity  of  values, 
corresponding  to  the  infinity  of  values  of  6.  For  its 

"  principal  value"  we  have 
Z(z)=log,r+  i.00=Z(r)+  i.00 

and  a  variety  of  equivalents  of  L(z)  are  given  by 

L(z)  =  l(\z\)  +  6.Amp  z  =  l(z)  +  Z.k.Tr.i  =  L(|z|)  +  t.amp  z 

—  l(r)  being  an  equivalent  of  the  real  loger,  as  E(#)  is  of  [ex]. 
And        L(ZI  x  z2)  =  l(\Zi  |  x  |z2|)  +  t.(Amp  ZA  +  Amp  z2) 

+  ?(IZ2!)  +  t.(Amp  Zi  +  Amp  z2) 

(3)  These  facts  of  (1)  and  (2)  enable  us  to  give  the  required 
extension  of  the  last  two  operations.  For,  when  a  is  real, 

we  have  za  =  [r°].cis  a.d. 
And  loge[ra]  =  a.  logcr*  =  a.l(r), 
therefore  [ra]  =  [ea'*W]  =  E(a  J(r  )) 
Hence  za  =  E  (aJ(r)).E(t.a.(9) 

.. 
=  E  (a.L(z)) 

(4)  Thus  we  arrive  at  the  general  definition 

zw  =  E  (w.L(z)),  when  z  and  w  are  both  complex, 
=  E((t*+  i.v.).(l(r)+  1.6)) 
=  E  (u.l(r)  -  v.6  +  t.  (t?J(r)  +  w.^)) 
=  E  (u.l(r)  -  v.6).  cis  (v.l(r)  +  «.^) 

giving  this  general  involution  in  a  standard  complex  form. 

*  See  Ch.  V.,  §  24,  (ii.),  p.  45,  footnote. 
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And  [z»]  =  E(w.l(z]  ) 
Cor.  L(zw)  =  t0.L(z). 

(5)  And  for  Logarithmation, 

Iog2w;  --=  p      if      w  =  zp  •- 
therefore,  if  L(w>)  =  p.L(z). 
Hence    logzw=  L(w)/L(z)  =  (l(p)  +  i.</>)/(l(r)  +  1.6),  etc. 
And  [log  zw\  =  l(w)/l(z)* 

(6)  The  Involution  and  Logarithmation  theorems,  for  the 
general  case,  are  immediate  corollaries  : — 

ECp.L(z))  x  E(g.L(z))  =  ZP  x  z* 

And 

Iog2(^>  x  g)  =  L(^>  xq)/L(z)  =  (L(p) 

(iii.)  The  facts  of  §§  26,  27  shew  that  we  have  arrived  at 
a  system  of  Numbers  and  of  Operations  on  which  there  remain 
none  of  the  restrictions  which  hampered  free  manipulation 
at  the  earlier  stages.  These  are  the  general  Numbers  and 
Operations  of  Algebra. 

Note   on   "  VECTOR  ANALYSIS." — 

The  "  analysis"  of  Physical  relationships,  in  terms  of  the  Number- 
system,  fails  in  one  important  respect.  The  numbers  of  Algebra  are 
not  adequate  to  the  measurement  of  a  ̂ ree-dimensional  system  of 
vector -quantities  (the  practically  important  Vector  case).  This  pv.\s 
further  emphasis  to  the  fact ,  already  noted  (p.  5,3),  that  the  relation- 

ship of  vector-quantities  (as  such)  to  the  number-system  is  relatively 
unimportant. 

*  The  notation  Log^u;,  log^M?  is  sometimes  used  instead  of  logzu?,[log  #v] 
respectively. 
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The  basis  of  any  "  Vector  Analysis"  must  necessarily  be  geometrical, 
because  of  the  essential  geometrical  element  — of  Direction — in  the 
specification  of  vector-quantities  ;  and  the  purely  geometrical  "  line- 
vector  (or  "  length-vector")  is,  therefore,  the  basic  type  of  vector.  The 
fundamental  operation  of  Addition,  defined  for  line -vectors,  (with  its 
unrestricted  Subtraction-inverse)  is  universally  applicable  to  the  Vector- 
quantities  of  Physics  ;  and  it  is — as  we  have  seen — in  agreement  also 
with  Addition  as  denned  for  the  Complex  Numbers. 

But  there  is  no  general  development  of  Vector  operations,  closely 
analogous  to  that  of  the  seven  algebraic  operations.  The  scheme  of 
Vector  Analysis  which  is  practically  most  serviceable* — identified  with 
the  names  of  Heaviside  and  Willard  Gibbs — turns  (1)  on  the  use  of  a 
type  of  vector  which  approaches  one  stage  nearer  to  the  number- 
system  than  the  line- vector,  (2)  on  the  definition,  for  this  type  of  vector, 
of  a  third  operation — which  has  a  partial  analogy  to  Multiplication. 
The  vector -quantities  in  question  have  number,  instead  of  length,  as 
corresponding  "  scalar"  type,  and  are  to  be  called  "  number-vectors" 
(or  "  pure  vectors").  They  may  be  regarded  as  "  measures"  of  a 
system  of  vector-quantities  of  any  other  kind — in  particular,  of  length  - 
vectors  ;  but  they  are  essentially  vectors  (i.e.,  directed  quantities),  not 
numbers. 

The  third  operation  may  be  specified  in  a  simple  geometrical  way — by 
extending  the  rectangle -are  a  definition  of  "  product"  of  two  lengths,  to 
give  the  definition  of  "  product"  of  two  length -vectors  OP,  OQ  as  the 
area-vector  of  the  parallelogram  OPSQ,  a  vector  of  which  the  direction 
is  a  screw  related  direction  at  right  angles  to  the  directions  of  OP,  OQ. 

This  geometrical  "  product"  is,  of  course,  a  quantity  of  different  kind 
from  its  "  factors"  ;  but  if  we  pass  from  the  purely  geometrical  vectors, 
to  number- vectors,  by  using  measures  of  the  two  lengths  and  the 

measure  of  the  area  with  reference  to  the  "  square  unit'''  of  area,  we  arrive 
at  an  appropriate  definition  of  the  "  product"  of  two  number -vectors,  as  a 
third  number -vector.  And  this  gives  a  Vector  operation  which  is  of 
great  importance  in  Physical  theory. 

Thus  we  have  three  operations  generally  applicable  to  number - 
vectors,  so  as  to  give  a  number-vector  analysis — which  is  the  Vector 
Analysis  of  Heaviside  and  Gibbs.  But  the  third  operation  is  analogous 
to  Multiplication  in  respect  of  only  one  of  the  three  fundamental 
algebraic  characteristics  :  it  is  subject  (with  Addition)  to  a  Law  of 
Distribution,  but  it  is  not  subject  to  Laws  of  Commutation  and  Associa- 

tion. And  there  is  (in  consequence)  no  useful  development  analogous 
to  that  of  the  four  remaining  algebraic  operations.  Hence  Vector 
Analysis  is,  as  a  mathematical  theory,  much  more  circumscribed  than 
algebraic  analysis  ;  and  its  importance  is,  in  fact,  in  great  measure  due 
to  use  in  conjunction  with  the  more  fundamental  analysis.  And 
in  this  connection  there  is  definable — as  a  corollary  to  the  definition 
of  the  "  vector  product" — another  "  product,"  of  two  number-vectors, 
which  is  called  their  "  scalar  product."  Itvis  a  number,  not  a  vector  ; 
and  it  also  has  an  important  place  in  Physical  theory. 

*  The  theory  of  "  Quaternions  '* — a  quaternion  being,  not  a  quant- 
ity but,  an  operation —  is  more  complicated. 
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PROOFS  OF  THE  FUNDAMENTAL  LAWS  FOR  THE 
NATURAL  NUMBERS. 

(i.)  The  Laws  of  Commutation  and  Association  in  Addition 
we  take  [See  Ch.  I.,  §  2]  to  be  part  of  what  we  get  directly 

from  our  most  elementary  experience  of  "  counting."  They 
are  the  mathematical  expression  of  the  facts  as  to  the  unique 

"  sum"  of  a  given  set  of  natural  numbers. 
(ii.)  The  corresponding  laws  in  Addition-and-Subtraction 

are  deducible,  as  follows  : — 

(1)  If,  for  example,  x=  a—  6+  c  —  d—  e  +  f—  g,  all  the 
symbols  denoting  natural  numbers — restricted  by  the  Natural 
Number  condition  on  each  subtraction,  as  it  arises — then 

x=y-  g,  iiy=a-b+c-d-e  +  f 

.'.     x+g=y=z  +  f,      itz=a— b+c— d— e. 
Similarly  z+  e=  a—  6+c—  d, 
and  z+e-i~d=a—  b  +  c=  U+  c,  say. 
Hence  (x  +  g)  +  (e  +  d)  =  (z  +  /)  +  (e  +  d)  ; 

/.  x+g+e+d=(z+e+d)  +/,    by  the  Addition  Laws  (i.) 
=  u  +  c  +  /. 

But    u=  a—  6,     .'.u+  b=  a;  hence,  in  the  same  way, 
x+  g+  e+  d+  b=  (w+  6)  +  c  +  /=  a+  c  + /. 

Thus  #  +  s  =  A      or      x=  A  —  s 
if  A  denote  the  sum  of  the  additive  numbers  (a,  c,  /)  of  the 
given  expression  for  x,  and  s  the  sum  of  the  subtractive 
numbers  (6,  d,  e,  g)  of  that  expression  :  sums  which  are,  of 
course  [See  (i.)],  independent  of  the  order  of  the  additions 
from  which  they  result. 

The  method  is  clearly  of  a  general  type,  and  the  result  in  the 
form  x  =  A  —  s  also  general,  subject  only  to  the  Subtraction 
conditions  on  an  original  expression  for  x  of  the  type  in 
question.  Hence  the  Law  of  Commutation  in  Addition-and- 
Subtraction. 
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Thus,  a  —  6  +  c  —  d—  e  +  /  —  g=  c—  g—  d+  a  +  f—  e—  b 
for    numbers      a,     •     •     •     g,      so     restricted     that     every 
subtraction  as  it  occurs  is  subject  to  the  Natural  Number 
condition. 

Taking  a  numerical  case, 
7-3-2+l+4-6=4-2+l  +  7-6-3(  =  12-ll  =  l); 
but  1—6—2+4—3+7  is,  for  example,  not  an  admissible 

"  commutation,"  in  this  case,  because  the  subtraction  1—6 
does  not  satisfy  the  Natural  Number  condition. 

(2)  If,  again,  x'  =  a  —  (b  —  c  +  d)  —  e  +  (/—  g),  for  instance, 
and  the  natural  numbers  a,  •  •  •  ,  g  conform  to  the  Subtraction 
condition  for  all  the  subtractions  involved,  we  may  write 

x' =  a-  p-  e+  q,      p=b-c+d,      q=*f-g> 
Then,  by  (1),     x'  +  p+e=a+q,    p+c=b+d,    q+g  =  f; 
and,  using  the  same  principles  as  in  (1), 

x'  +  p+  e+c+gr=a+g+c+gr 
/.     x' +  (p+  c)+  e+  gr=  a+  c+  (q+  g), 

by  the  Addition  Laws  (i.) 

/.     z'+6+d+e+gr=a+c  +  /,       or       Z'+S=A 
Thus  x '  =  A  —  s  =  x,       for  the  case  in  question. 

The  principles  are  clearly  general,  and  give  the  Law  of 
Association  in  Addition-and-Subtraction. 

In  the  numerical  case,  we  have 

7-3-  2  +  1  +  4-6=  (7-  3)-  (2-  1)+  4-  6,    etc.  ; 
but  7-  (3+2-  1)+  (4-6)  is,  for  example,  not  admissible, 
because  it  does  not  conform  to  the  Subtraction  condition. 

(iii.)  The  Laws  of  Commutation  and  Association  in  Multi- 
plication may  be  proved  as  follows  : — 

(1)  o.(6.c)=(c+  c+  •  •  •  b  terms)  +  (•••)+•*+(•••)• 
there  being  a  equal  composite  terms. 

-  (c  +  c  +  •  •  •  a  terms)  +(••.)+••+(•••)> 
there  being  b  equal  composite  terms. 

=  6.(o.c),  using  the  primary  propositions  of  (i.) 
And,  in  particular,  when  c  =  1,      a.b  =  b.a 
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(2)  Applying  the  results  of  (1), 

a.(b.c)  =  a.(c.b)  =  c.(a.fc)  =  c.(b.a) 
=  b.(a.c)  =  b.(c.a]  ;    and  (a.b).c  =  c.(a.b) 

Hence  all  the  ways  of  multiplying  together  three  given  natural 
numbers  yield  the  same  product — so  proving  the  laws  for  that 
case. 

(3)  a.b.c.d=  a.(b.c.d),  by  definition 
=  a.(b.(c.d)) 

=  a.b.(c.d)  =  (a.b).(c.d)  =  (a.b.c).d,  by  (2) 

(4)  a.b.c.d.e=  a.(b.c.d.e)  =  a.b.(c.d.e),  by  definition 
=  (a.b).(c.d.e)  =  (a.b.c).(d.e) 
=  (a.b.c.d).e,  by  (2)  and  (3). 

(5)  So,  proceeding  step  by  step,  we  arrive  at  the  general 
result 

a.b.c.  -  -  •  1=  a.(b.c.  •  •  •  •  l}=  (a.b).(c.d.  •  -  •  I) 

=  (a.b.c).(d.e  ....'!)-.... 
when  the  "  association"  is  restricted  to  two  groups  of  factors. 

(6)  The  Law  of  Association  then  follows,  by  a  converse  use 
of  (5),  as  in  the  following  example  : — 

a.(b.c).(d.e.f.g).(h.k.l) 

=  a.(b.c).(  (d.e.f.g).(h.k.l)),  by  defn. 
-  a.(b.c).(d.e.f4.h.k.l),  by  (5) 
=  a.(b.c.d.e.f.g.h.k.l),  by  (5) 
=  a.b.c.d.  •  •  -  -  I. 

The  argument  is  clearly  general. 

(7)  The  Law  of  Commutation  then  follows,  by  "  associat- 
ing," then  "  commuting,"  then  "  disassociating,"  two  con- 

secutive factors — and  repeating  the  process  as  often     as 
necessary.     For   example, 

c.e.a.d.b=  c.(e.a).(d.b)  =  c.(a.e).(b.d) 
=  c.a.e.b.d  =  a.c.b.e.d,  similarly 

=  a.b.c. d.e,  similarly. 
The  argument  is,  again,  clearly  general. 
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(iv.)  Since  there  are  Laws  for  Multiplication  exactly 
analogous  to  (if  not  nearly  so  obvious  as)  the  Laws  for  Ad- 

dition, and  since  Division  has  exactly  the  same  general  type 
of  relation  to  Multiplication  that  Subtraction  has  to  Addition, 
the  Laws  of  Commutation  and  Association  in  Multiplication- 
and-Division  may  be  proved  by  exactly  the  same  type  of 
argument  as  we  used,  in  (ii.),  for  the  Addition-and- Subtraction 
Laws.  For  example,  if  x=a+bxc^-d^-exf-^g,  in 
which  all  the  symbols  denote  natural  numbers — restricted 
by  the  Natural  Number  condition  on  each  division — we  may 
write 

xxg=y=zxf',      zxexd=uxc;      ux  b=  a 
giving  xx  g  x  ex  dx  6  =  ax  ex/; 

thus  #  x  D  =  M,    or    #  =  M-f-D 
if  M  denote  the  product  of  the  multiplicative  factors  of  the 
given  expression  for  x,  and  D  the  product  of  its  divisive  factors ; 
etc. 
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THE  SIGN  OF  MULTIPLICATION. 

(i.)  It  has  become  a  general  practice  to  omit  any  specific 
sign  of  Multiplication,  in  algebraic  forms — not,  as  we  shall 
see,  in  the  arithmetical  forms  which  these  "  represent."  The 
practice  is  to  write  ab  f or  a  x  b  or  a.b  ;  and  the  sole  reason  for 
this  practice  is  economy — a  principle,  certainly,  of  great 
importance.  If  the  economy  is  sound,  the  practice  is  suf- 

ficiently justified. 
The  form  ab  might,  of  course,  have  been  used  for  any  one  of 

the  operations — say,  for  Addition  (and,  in  this  connection, 
see  (ii.),  (2)  below).  The  reason  for  attaching  it  to  Multipli- 

cation is  probably  to  be  found  in  the  elementary  transition 

from  "  counting  things"  to  "  measuring  quantities."  We 
ordinarily  say  "  five  miles,"  and  write  "  5  mis.,"  for  what  is 
more  scientifically  expressed  as  "  five  times  the  mile,"  written 
"  5. ml"  ;  and  since  the  distinction  between  the  two  symbolic 
forms  is  commonly  ignored,  the  mere  combination  of  symbols 

comes  naturally  to  be  used  as  notation  for  a  "  product" — 
in  particular,  when  the  quantity  multiplied  is  also  a  number. 

The  object  of  this  note  is  to  show  reasons  for  regarding  the 
practice  in  question  as  theoretically  and  practically  unsound. 

(ii.)  The  practice  conflicts  with  the  fundamental  unity  of 
Arithmetic  and  Algebra  : 

(1)  If  we  write  ab  for  the  product,  and  then  give  to  a  and  6 
natural  number  values,  it  is,  of  course,  necessary  to  insert  a 
specific   sign  of  multiplication.     Thus, 
if  a  =  2  and  b  =  3,  ab  =  2.3  not  23  ; 
if    a  =  27  and  b  =  349,    ab  =  349  x  27  =  27  x  349  not  27349. 

This  conflict  of  Algebraic  practice  with  the  Decimal  Nota- 
tion of  Arithmetic  is  of  very  considerable  psychological 

importance  to  the  beginner,  and  contributes  in  no  small 
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measure  (all  the  more,  because  subconsciously)  to  a  prevalent 
haziness  as  to  mathematical  principles,  on  the  part  of  those 
who  have  to  use  mathematics  for  a  variety  of  practical 
purposes. 

The  basic  importance  of  the  Natural  Numbers,  to  the 
Number-system,  makes  this  point  of  the  greater  importance. 

(2)  The  "  mixed  fraction"  notation,  while  consistent  with 
the  Decimal  Notation,  brings  out  even  more  clearly  the  con- 

flict with  Algebra.  For  example,  5£  means,  not  5  x  4/9, 
but  5  +  4/9. 

(iii.)  Since  alphabetical  symbols  are  used — not  as  such — 
in  all  algebraic  work,  there  is  an  essential  conflict  of  product- 
expressions  with  words. 

(1)  This  has  in  itself  some  slight  psychological  significance 
for  the  beginner.     It  becomes  of  distinctly  greater  importance 
— to  the  non-mathematical — at  the  stage  at  which  specifically 
mathematical  words  come  into  use  :    the  most  familiar  of 

these  being  "  log,"  "  sin,"  "  cos,"  etc.     If  the  "  functional" 
significance  of  these  forms  were  more  generally  emphasised 
at  an  early  stage,  the  complication  would  be  more  serious 
[See  (iv.)  below]  ;    they  are  commonly  regarded  at  first  as 

mere  contractions  ("  the  logarithm  of"  a  number  ;   "  the  sine 
of"    an    angle ;     etc.).       A    good    illustration    is    cis  x    for 
(cos  x  -f-  t.  sin  x)  ;  only  convention  (a  bad  guide  in  scientific 
work)  distinguishes  this  from  a  product  form. 

(2)  The  composite  symbols  characteristic  of  the  Infinitesimal 
Calculus — ox  (or  Ax),  S?/,  etc.,  dx,  dy,  etc.,  Dy,  etc. — obviously 
bring  the  conflict  of  symbolism  to  an  acute  issue.     It  is 
quite  unscientific  to  have  any  form  (such  as  these)  capable 
of  two   quite   different   interpretations,   resolvable   only  by 
reference  to  the  context.     And  there  is  nothing  more  true 
to  the  spirit  of  mathematical  thought  than  the  symbolism 
of  the  Calculus. 

(3)  Sir  Napier  Shaw  has  pointed  out,  more  than  once,  the 
necessity — for  the  most  modern  of  the  sciences* — of  a  general 

*  The  sciences  of  the  Air. 



THE  SIGN  OF  MULTIPLICATION.  67 

development  of  such  composite,  or  syllabic,  symbolism,  if  only 
the  conflict  with  product-forms  could  be  avoided.  In  an 
article  on  "  Symbolic  Language  of  Science,"  in  '  Nature,' 
Nov.  4,  1920,  he  points  out  the  need  to  "  expand  .... 
notation  •  •  •  by  proceeding  from  single  letters  to  syllables 
•  •  •  -  an  easy  and  effective  way  of  dealing  with  the  question 
if  we  could  do  away  with  the  convention  that  multiplication 
needs  no  symbol  of  operation  and  require  that  every  operation 

should  be  represented  by  a  suitable  sign."  (Italics  supplied.) 
(iv.)  There  is  a  further  conflict  with  the  notation  for 

functional  forms. 

In  f(x)  the  presence  of  the  brackets,  otherwise  unnecessary, 
is  a  sufficient  indication  of  the  meaning  ;  but  in  f(x  +  h)  and 
f(x—  a),  for  example,  there  is,  again,  nothing  but  context — 
and  experience — to  distinguish  the  functional  expression  from 
the  product.  And  this  is  the  more  important,  in  that  the 
function-symbol,  /,  may  often  itself  be  conveniently  used  to 
denote  the  quantity  specified  by  the  expression  /( x) . 

(v.)  To  sum  up  :  The  mere  juxta  position  of  two  symbols 
is  not  really  adequate  to  the  denoting  of  any  specific  opera- 

tion. It  has  two  many  other  important  uses. 
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NOUGHT  AND  INFINITY. 

(i.)  "  Infinity"  is  a  fundamental  characteristic  of  the  system 
of  Natural  Numbers.  The  term  is  used  to  express  the  fact 
that  there  is  no  end  to  the  increasing  sequence  of  these 
numbers. 

The  special  symbol  oo,  meaning  infinity,  is  used  in  the 
expression  of  results  obtained  from  increase  without  limit 
of  a  natural  number  variable,  in  certain  types  of  general 
propositions.  Thus  (the  symbols  m,  n  denoting  Natural 
Number  variables) — 

(1)  m+  n  =  n  +  m  >  m    gives  oo  +  n  =  n+  00  =  oo; 
and,  further,  00+00=  oo . 

Whence,  inversely,    oo  —  n  —  oo  ;    while 
oo—oo  may  have  any  value,  up  to  oo  itself. 

(2)  mxn=nxm>m    gives     oo  x  n  =  n  x  00=  oo; 
and,  further,  00x00=00. 

Whence,  inversely,      oo  -f-  n  =  oo  ;    while 
oo  4-  oo  may  have  any  value,  up  to  oo  itself. 

Division  by  oo  is  otherwise  irrelevant  within  the  Natural 
Number  system,  which  requires  divisor  not  greater  than 
dividend. 

(3)  mn>m    gives     oon  =  oo;    and,  further,      oo°°=oo. 
Whence,  inversely,    y'  oo  =  oo  ;    while 

l°g»  °°  may  huvz  any  value,  up  to  oo  itself. 

(4)  For  the  case  of  nm,  we  note  that 
if      n  >  1,  nm  =(l  +  p)m  >  1  +  m.p  > m,* 

Hence     n°  =  oo,      if      n  >  1      [and,  as  in  (3),    oo00  =00]. 
Whence,  inversely,  logno°  =  oo,      if      n  >  1  ;    while 

°^/  oo  may  have  any  value,  from  2  to  oo  itself. 

*See  Appendix  IV.,  (i.),  (1). 
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But  logi°°  remains  unprovided  for;  and  1°°,  we  shall 
see  [  (iii.),  (5),  below],  requires  further  discussion. 

N.B.  —  It  is,  of  course,  essential  to  these  propositions  that 
oo  does  not  denote  a  number,  as  all  the  other  symbols  (to  which 
it  is  used  analogously)  do. 

(ii.)  The  "  number"  nought  (denoted  by  0)  we  have  seen 
to  be  a  corollary  fco  the  Decimal  Notation  for  the  Natural 
Numbers.  [See  Ch.  I.,  §  10]. 

(1)  Its  most  obvious  defining  property  is  n  —  n=  0,  regarded 
as  the  extreme  case  of  Natural  Number  Subtraction  —  giving 
0  the  place  before  1  in  the  Natural  Number  sequence. 
From  this  relation  we  have,  inversely,  n=  0+  n=  n+  0, 

and,  again,  n  —  0  =  n  ;  and,  further,  0  ±  0  =  0. 
Also,  0  +  oo=  oo  =  oo  ±  0  ;  and  oo  —  oo  may  have  0  as 

value.  [See  (i.),  (1)  ]. 

(2)  Ox  n=  0  =  nx  0  —  a  product  equal  to  the  lesser  of  its 
own  factors  ;   further,  0x0=0. 

Whence,  inversely,      0-i-w=0,      if      n  >  0  ;    while 
0  -T-  0  may  have  any  value,  from  0  to  oo  . 

Also,  0  -:-  oo  =  0*  ;  but,  inversely,  the  form  0  x  oo,  we 
shall  see  [  (iii.),  (3),  below],  requires  further  discussion. 

The  general  question  of  division  by  0  also  remains  so  far 
undetermined. 

(3)  On  =  0,    if    n  >  0  ;     and,    inversely,     ̂ /Q  =  0  ; 
Iog00   may  have  any  value  from  I  to  oo. 

Also    s^/0  =  0*,    but,    inversely,    the    form   0"  ,    we    shall 
see  [  (iii.),  (4)  below],  requires  further  discussion. 

(4)  TI°  =  1,  if  n  >  0,  this  being  regarded  as  the  extreme  case 
[  see  (1),  above  ]  of  np~9  ;  and,  inversely,  logwl  =  0,  if  n  >  0. 

[The  evolution  sign  is  never  extended  to  ty.  See  §  22,  (iv.)]. 

Also  log^l^O*;    but,  inversely,  the  form  00°,  we   shall 
see  [  (iii.),  (5)  below],  requires  further  discussion. 

(5)  From  (3)  and  (4)  it  is  clear  that  0°  requires  further 
discussion.     [See  (iii.),  (5),  below]. 

*  There  is  clearly  no  other  possibility. 
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(iii.)  In  coming  to  apply  these  ideas  to  the  general  mathe- 

matical system,  we  note  that  the  "  real  number"  nought  is  no 
longer  an  extreme  of  the  number-system  —  it  is  the  number 
which  separates  the  Negative  Real  Numbers  from  the  Positive 

Real  Numbers  ;  that  the  system  extends  "to  infinity"  both 
positively  and  negatively  ;  and  that  the  extension  to  infinity 
(and  through  nought)  is  no  longer  by  regular  sequence  (or 

"  progression"),  but  by  continuous  increase  or  decrease. 
The  results  of  (i.)  and  (ii.)  can  be  proved  to  hold  generally 

when  the  natural  number  variable  n  is  replaced  by  the  real 
number  variable  x  —  with  certain  obvious  modifications 
corresponding  to  the  facts  just  stated.  Thus* 

(1)  (±oo)±  x  =  ±  oo  ;     and,    further,    x—  (  ±  oo)  =  =f  oo; 
x±Q=x;  „         „      ,  Q-x=(-x) 

(2)  (+oo)x;e=±oo=(+oo)-:-a; 
and    (—  oo)x  x  ==F   oo=(—  oo  )  -=-  x, 

according  as   x  is  positive  or  negative  ; 
Ox  x=  0  =  0  -r  x,  unless  x  =  0. 

The  proof  in  each  case  consists  in  showing  that  we  can 
arrive  at  an  algebraic  sum,  or  product,  further  from  0  than 
any  (great)  number  we  care  to  name  —  or  nearer  to  0  than  any 
(small)  number  we  care  to  name  —  simply  by  giving  a  cor- 

responding variation  to  one  of  the  terms,  or  factors.  We 
proceed  to  apply  this  type  of  argument  to  the  two  new  cases, 
of  division  by  oo  and  division  by  0.  [See  (i.),  (2)  and  (ii.),  (2)  ]. 

(3)  We  use  the  elementary  theorem  that,  if  x,  y  be  positive, 
the  quotient  x/y  decreases  or  increases  as  y  increases   or 
decreases,  respectively,  while  x  is  not  varied 

and  the  further  fact  that  x/y  may  be  made  less  than  any 
positive  real  number,  s,  we  care  to  name  —  however  small— 
by  sufficiently  increasing  y  [x/y  <s  if  y  >  x/s]  ;  or  x/y 
made  greater  than  any  positive  real  number,  G,  we  care  to 
name  —  however  great  —  by  bringing  y  sufficiently  near  to  0 
[x/y  >  Q,  if  y  <  X/G].  _ 

*  It  is  important  to  have  clearly  in  mind  the  two  different  meanings 
of  the  sign"  +  ",  and  the  three  different  meanings  of"  —  "  [See 
footnote  to  p.  17]. 
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The  mathematical  expression  of  these  facts,  making 
obvious  extension  to  negative  values,  is  as  follows  :  — 

#-^(±oo)=0;     x+Q=±oo. 

This  makes  general  provision  for  the  zero-divisor. 
And,  inversely,      0  x  oo    may  have  any  real  value. 

We  further  note  that  each  of  the  forms  oo  -7-  oo  and  0  x  oo 
is  now  reducible  to  the  form  0  -^  0  —  using  the  Real  Number 
principle  that  division  by  a  number  is  equivalent  to  multipli- 

cation by  its  reciprocal  (and  vice  versa),  and  the  facts  (as  above) 
that  the  reciprocals  of  0  and  oo  are  respectively  oo  and  0. 

(4)*If  x>  +  1,  xy  increases  to  +  oowith  y.  [See  Appendix  IV.] 
x+M  =  +  oo  ;     and     oo00  =  oo. 

If  0  <  £  <  +  1,  xy=  (l/u)v  =  1/ttf,  where  u  =  \/x  >  +  1  ; 

hence,  by  (3),  x  +  x  =  0  ;  and  0  +  °°  =  Of 

Thus,  again,    x-*>(  =  l/x+co)  =  0  or    +  oo, 
according  as     x  >  +  1     or    0<x<  +  1  ; 

and,  inversely,     logjc(  +  oo)  =  ±  oo     and     log/^T  oo 

in  these  respective  cases.     And  O"30  =  +  oo  . 

But  the  cases  of  l±ao,  0°,  00°,  Iog00,  Iog0oo,  log^O,  log^oo 
require  further  consideration. 

(5)  For  the  cases  still  outstanding  we  may  use  the  Real 
Number  identity  [See  Ch.  V.,  §  23,  (ii)] 

in  which  a  denotes  any  given  (positive  real)  number.     And 
we  may,  for  convenience,  take  a  such  that  a  >  +  1. 

Thus,  using  (2),  (3),  (4),  we  have 

Iog0#=0,  since  log  ̂0  =  ±  oo  ;  and,  inversely,  0°  any  value 
logiX  =  ±  oo  ,  since  log^l  =  0  ;  and,  inversely,  1±°°  any  value 
log^x  =  0  since  log^oo  =  ±  oo  ;  and,  inversely,  00°  any  value. 

*  From  this  point  we  make  the  restrictions  required  for  purely  real 
number  theory  [See  Ch.  V.,§§  21-4].  This  implies  a  certain,  compara- 

tively unimportant,  limitation  of  the  results  (which  is  not,  however, 
final). 

f  This  is  clearly  the  only  possibility. 
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Further, 

Iog00  any  value     ;  logiO  =  ±  oo          ;  log^  0  any  value*  ; 
Iog0l  =  0  ;  log!  1   any  value  ;  log^  1  =  0; 

logo  °°  any  value* ;  log!  oo  =  ±  oo      ;  log^  oc  any  value^. 

(iv.)  The  several"  Indeterminate  Forms" — namely, 
oo  -  oo  ;  Ox  oo  ;  0^-0,  oo  -^  oo  ;  0°,   I*30,  00°  ; 
Iog00,   logil,   logo  oo  (andlog^O),   log^oo 

— constitute    the  groundwork  of  the  Infinitesimal    Calculus 

theory  of  "  Limits." 
These  forms,  as  has  been  indicated,  are  not  independent  of 

one  another.  All  are,  in  fact,  reducible  to  either  of  the  two 

most  important,  namely,  0  -r-  0  or  0  x  oc  — which  are  funda- 
mental, respectively,  to  the  Differential  Calculus  and  to  the 

Integral  Calculus. 

Expressions  in  a  variable  x  which  Jail  for  some  particular 
value  of  Xy  through  assuming  one  or  other  of  these  forms  at 

that  value,  generally  yield  what  are  called  "  limiting  values "- 
to  fill  the  blank  so  caused — determined  by  "  continuity" 
[see  Ch.  V.,  §  20]  with  the  values  given  by  the  expression  in 
the  immediate  neighbourhood  of  the  critical  point.  And  it  is 

such  "  limiting  values"  that  constitute  the  subject-matter of  the  Infinitesimal  Calculus. 

*  This  (real)  form  is  necessarily  negative, 
t  This  (real)  form  is  necessarily  positive. 
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VARIATION  OF  FUNCTIONS  SPECIFIED  BY 

ax  AND  logax. 

(i.)  We  require  the  following  elementary  inequalities  : — * 

(1)  If  x  >  +  I     and    */>  +  !,     then     x.y  >  -f  1. 
For  x.y  =  (1  +  u).(l  -f  v)  =  1  +  u  +  v  +  u.v 

in  which  u,  v  are  positive. 

Cor.  I.  The  product  is  greater  than  either  factor. 

Cor.  2.  Similarly,  x.y.z.   >1  +  (u+ v+  w+  -'••); 
and     x  +  n  >  1  4-  n.u     (for  positive  integral  exponents). 

(2)  If  0<  x<  +  1  and  0<  y<  +  1,    then    0<x.y<+l. 
For  0  <  x.y  =  x.(l  —  v)  =  x  —  x.v  <  x  <  1 

the  quantity  v  being  positive. 
Cor.  1 .  The  product  is  less  than  either  factor. 
Cor.  2.          0<x+»<+l. 

(3)  If  the  product  of  two  different  real  numbers  =  +  1,  one 
of  the  factors  must  be  less,  and  the  other  greater,  than  4-  1. 

Also,         tyx  >-t-l,     if  a;  >  4-  1 
and  0<^/x<  +  l,     ifO<z<4-l. 

These  follow  immediately  from  (1)  and  (2). 

(4)  If  x  >  0  and  y  >  0,  x/y  >  -f  1  according  as  x  >  y. 
For  x/y  -  1  =  (x  -  y]/y. 

(ii.)flfa  >  4-  1,  ar  increases,  from  0  to  4-  oo  ,  as  r  increases 
by  rational  values  from  —  oo  to  +  oo  : — 

(1)  If  r  is  positive,  ar  >  +  1  ;  iir  negative,  0  <  ar  <  +  1. 
For,  using  +  m,  +  n  as  representative  positive  integral 

numbers, 

*  These  would  be  generally  regarded  as  obvious  facts  ;  but  "obvious," 
in  such  a  connection,  means  very  easy  to  prove  ;  and  the  formal  proofs 
are  important. 

f  From  this  point  the  restrictions  are  to  be  observed  which  are 
characteristic  of  the  Real  Number  theory  of  Involution  and  Logarith- 
mation  [See  Ch.  V.,  §  21-4]. 
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a+m  >  +  1,    by  (i.),  (1),  Cor.  2 
and,  therefore,    j/a+m  >  +  1,    by  (i.),  (3). 

i.  e.,  a+m/n  >  -f  1. 

And     a-m/n=  l/a+m/n<  +  1,  by  (i.),  (3) 

(2)  If          p  <  q,  then  a*  <  a«. 

For,      a9/ap=  aq~v  >  +  1,  by  (1),  since  q  >p 
Hence  a«  >ap,  by  (i.),  (4). 

(3)  Now  a*00-  -f  oo,  by  (i.),  (1),  Cor.  2  [See  Appendix   III], 
and  a-30  =  l/a+°°  =  0. 

Hence,  as  r  increases  from  —  oo ,  through  0,  to  +00,  by 
rational  values,  ar  increases  from  0,  through  +  1,  to  +00. 

(hi.)  If  0  <  a  <  4-  1,  we  prove  similarly  (or  deduce  from  (ii.) 
by  substituting  a=  I/a')  that  as  r  increases  from  —  oo , 
through  0,  to  +  oo ,  by  rational  values,  ar  decreases  from  -f-  oo  , 
through  +  1,  toO. 

(iv.)  By  means  of  these  propositions  of  (ii.)  and  (iii.)  we 
are  enabled  [See  Ch.  V.,  §  23,  (i)  ]  to  define  Iog06  for  all 
positive  real  values  of  a  and  6. 

And  it  is  an  immediate  consequence  of  the  definition  that, 
if  a  >  +  1,  Iog0£  increases,  from  —  oo  to  -f  oo  ,  as  x  increases 
"  continuously"*  from  0  to  +00; 
and,  if  0<  a<  +1,  logax  decreases,  from   +  oo    to      -  oo , 
as  x  increases  continuously  from  0  to  +00. 

(v.)  Then  again,  from  (iv.),  we  have,  inversely,  ab  specified 
for  positive  real  values  of  a  and  all  real  values  of  b  [See  Ch.  V., 
§24.] 

And  it  is,  again,  an  immediate  consequence  that  if  a  >  +  1, 
a*  increases,  from  0  to  -f  oo ,  as  x  increases  continuously  from 
—  oo  to  -f  oo  ; 
and,  ifO<a<+l,    ax  decreases,  from  +  oo  to  0,  as  x  increases 
continuously  from  —  oo  to  +00. 

*  See  Ch.  V.,  §  20 



VARIATION  OF    a*  AND  logax.  75 

(vi.)  Further,  the  variations  of  logax  and  of  ax  considered 
in  (iv.)  and  (v.)  are  themselves  continuous  variations. 

To  prove  this,  it  is  sufficient — seeing  that  each  of  the  varia- 
tions in  question  is  either  increase  throughout  or  decrease 

throughout — to  show  that  Iog0£,  in  its  variation,  takes  every 
real  value,  and  that  ax,  in  its  variation,  takes  every  positive 
real  value.  And  this  is  obviously  true,  since — 

(1)  Iog0a:=  v    if     x=  d° 
which  determines  x,  given  v  (real) — by  (v.) ; 

(2)  ax  =  p    if     x  =  logap 
which  determines  x,  given  p  (real  and  positive) — by  (iv.). 

Thus,  in  the  language  of  the  Infinitesimal  Calculus,  logaa; 

and  ax  specify  "  continuous  functions  of  x,"  if  a  be  "constant" 
with  respect  to  x  [See  following  Note].  These  are  important 
fundamental  facts  for  Differential  Calculus  theory. 

The  graphs  of  logax  and  of  ax  are  clearly  of  the  simplest 
possible  (non-straight)  type.  Like  all  mutually  inverse  forms, 
one  and  the  same  curve  can  be  used  for  both  graphs — by  inter- 

change of  "  x-axis"  and  "  ?/-axis"  [See  following  Note]. 
The  graphs  should  be  "  plotted  out,"  by  a  sufficient  number  of 
guiding  points,  for  several  different  values  of  the  "  constant" 
a — in  particular,  for  a  =  +  10  and  a  =  e  =  +  2-718  .... 
[See  Ch.  V.,  §  23  (ii),  and  Ch.  VI.,  §  27  (ii),  (1)  ],  using  Loga- 

rithm and  Antilogarithm  Tables. 

Note  on  CONTINUOUS  FUNCTIONS — 

The  relation  y  =  J(x)  is  said  to  specify  y  as  a  "  continuous  function 
of  #,"  in  so  far  as  y  varies  continuously  when  x  varies  continuously. 

The  continuous  variation,  here  under  discussion,  of  the  two  (mutually 
inverse)  functions  specified  by  log«a;  and  a*  is  of  the  simple  type 
called  "  monotonic"  (either  increase  only  or  decrease  only).  But continuous  variation  in  general  consists  of  alternate  increase  and 
decrease,  separated  by  "  turning- values"  at  which  the  variable  ceases 
to  increase  and  begins  to  decrease  ("  maximum  values")  or  ceases  to 
decrease  and  begins  to  increase  ("  minimum  values"). 

Practically  all  the  functions  (of  an  "  argument"  x)  which  commonly 
occur  are  continuous  functions  of  x,  except  at  values  of  x  which  make 
y  infinite. 
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From  the  graph  of  a  function — drawn  on  tracing  paper — the  graph 
of  the  function  "  inverse"  to  it*  may  be  obtained  by  tracing  the  figure 
through  to  the  "  back"  of  the  sheet,  and  marking  "  Ox"  the  trace  of  Qy, 
and  marking  "  Ot/"  the  trace  of  Ox.  Since  "  continuity"  of  a  function 
corresponds  to  geometrical  continuity  of  its  graph,  this  makes  it 
apparent  that  continuity  of  a  function  implies  specific  continuity  of 
the  inverse  function. 

A  "  constant,"  with  respect  to  x,  is  to  be  thought  of  as  a  "variable," 
which  is  not  a  function  of  x  :  that  is  to  say,  "  constant"  is  in  con- 

tradistinction to  "  function,"  not  to  "  variable." 

*/(#),  F(X)  are  said  to  specify  "  mutually  inverse"  functions  ofx, 
if  y  =>  f  (x)  is  equivalent  to  x  =  F  (t/)  (and  y  =-  F  (x)  equivalent  to 
x  •»  /  (t/)  ).  Thus  z3  and  ̂ Koe,  cos  x  and  cos~1x,  are  examples. 

Wholly  set  up  and  printed  in  Australia,  by 
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