pered bottle and allowed to stand for eight days in a dark, cool place. The tincture is then separated by straining and filtering. Thus prepared, it has a very deep brownish-red color by transmitted light, a taste at first cooling and sour, then like weak tea, and a very acid reaction.

CHEMICAL CONSTITUENTS.—I am unable to find any chemical data regarding this plant, with the exception of the flowers; they have been analyzed, but show nothing of the active principle, which probably lies in its acid.

PHYSIOLOGICAL ACTION.—The true action, physiologically, of this plant is not known. The provings have been carefully made, and show symptoms of some importance, but are not sufficient to determine its sphere.

Description of Plate 111.

1. Upper part of a plant from W. Brighton, S. I., July 5th, 1879.
2–4. Flowers.
3. Section of flower.
5. Root.
6. Pollen x 380.
7. Seed (enlarged).
UVA-URSI.

BEARBERRY.

SYN.—ARCTOSTAPHYLOS UVA-URSI, SPRENG.; A. OFFICINALIS, WILLD.; ARBUTUS UVA-URSI, LINN.; DAPHNIDOSTAPHYLIS FENDLERIANA, KLOT.

COM. NAMES.—BEARBERRY, MOUNTAIN BOX, RED BERRY, UPLAND CRANBERRY, BEAR'S GRAPE, RED-BERIED TRAILING ARBUTUS, WHORTLEBERRY,† HETH, UNIVERSE; (FR.) BUSEROLLE, RAISIN D'O urs; (GER.) BARE NT RAUBE.

A TINCTURE OF THE LEAVES OF ARCTOSTAPHYLOS UVA-URSI.

Description.—This peculiar boreal shrub is seldom erect except that it throws its young shoots upward for from 3 to 8 inches. Stems numerous, depressed or trailing; branches various, the sterile from 2 to 3 feet long and compactly leafy, the fertile shorter; bark mahogany color, scaling off in irregular patches; roots thick, ligneous, and creeping. Leaves alternate, coriaceous, thick, shining, and evergreen, turning mahogany color when aged, those of the erect branchlets more or less vertical, all oblong spatulate, entire, retuse, and tapering to a short-petioled base. Inflorescence in few-flowered, terminal clusters or racemes; bracts and bracteoles persistent, finally becoming rigid; flowers pale, rose-colored, drooping. Calyx reddish, persistent, free from the ovary; lobes 5, roundish. Corolla urceolate, pellucid at the base, deciduous; tube inflated, hairy inside, hypogynous; lobes 5, short acute, recurved. Stamens 10, included; anthers large, upright, introrse, the cells opening by terminal pores and appended upon the dorsal surface by 2 reflexed awns. Ovary 4 to 10 celled; ovules solitary in each cell. Fruit a glabrous, depressed-globose berry or drupe, about the size of a pea; pulp mealy and insipid; nutlets 5, when the fruit is baccate, or united firmly into a 5-several celled stone when drupaceous; whether distinct or coherent, the nutlets are bony and 1-nerved upon the dorsal surface.

Ericaceae.—This chiefly boreal family is represented in North America by 34 genera, 135 species, and 32 recognized varieties, thus producing half the ericaceous genera of the globe, but only one-eighth of the total number of species. The order is characterized as follows: The growth comprises trees, shrubs, and

* ἄργερος, arktos, a bear; σταφύλη, staphyle, a grape or berry.
† Generally applied to species of Vaccinium, especially V. Vitis Idea, Linn.
some perennial herbs, all having alternate, simple, and undivided leaves, and no stipules. Flowers symmetrical, 4- to 5-merous, perfect; calyx imbricated or valvate in the bud. Corolla gamopetalous, or not rarely 4- to 5-petalous, regular or irregular, hypogynous except in Vaccinææ, imbricated or convolute in the bud. Stamens free from the corolla or nearly so, as many as twice as many as its lobes; filaments distinct; anthers introrse or becoming introrsely inverted, 2-celled, usually opening by pores or chinks, and generally awned or somehow appendaged; pollen usually composed of 4 united grains. Ovary 4- to 10-celled; placenta axial, except in Monotropeæ; ovules solitary or numerous, anatropous; style single; stigma entire or merely lobed, except in Clethra, where it is 3-cleft. Fruit capsular, baccate, or drupaceous; embryo small or minute; albumen fleshy; cotyledons small or undeveloped.

Our only proven species of this order, except the six represented in this work, are: The European, Asiatic, and British-American Labrador Tea (Ledum Palustre, Linn.); and the Russian intoxicant and anti-rheumatic Yellow Rosebay (Rhododendron chrysanthemum, Linn.).

Other medicinal species are: The American Rosebay (Rhododendron maximum, Willd.), an astringent, and by some accounted narcotic and poisonous; the Swiss R. ferrugineum, Linn., an antiarthritic; and the Persian R. ponticum, Linn., supposed to be one of the plants whose nectar renders the honey of Trebisond poisonous—an influence also said to be contributed to by Azalea pontica, Linn., of this order. The North American Alpine Azalea (Loiseleuria procumbens, Desv.) is, like all of the order, astringent; and Marsh Tea (Ledum latifolium, Ait.), used in dysentery, diarrhœa, tertian ague, and in some places to render beer heady, though it is said to bring on delirium. The fruit of the Strawberry Tree of the Levant (Arbutus Ûmedo, Linn.), when made into wine, is said to be narcotic—a property also ascribed to the wine of Whortleberries (Vaccinium uliginosum, Linn.), which is very intoxicating. The leaves of the European and North American Andromeda polifolia, Linn., are an acid and dangerous narcotic, and are said to kill sheep if browsed upon.

Many species of the order furnish our tables with fine refreshing berries, viz.: The Blue Berry (Gaylussacia frondosa, T. & G.); the Huckleberry (G. resinosa, T. & G.); the Blue Huckleberries (Vaccinium Pennsylvanicum, Lam., vacillans, Solander, and corymbosum, Linn.); and the Cranberries (Vaccinium macrocarpon, Ait., and V. oxyccocus, Linn.); the latter are also refrigerant, and a fine palliative dressing for acute erysipelas.

Among the Western Aborigines the Manzañita, the fruit of Arctostaphylos tomentosa, Dougl., is extensively eaten in a fresh or dried state. When dried it is husky but sweet, and is often ground and made into sun-baked bread, or, mixed with corn-meal and cactus syrup, fermented and drank; the cranberry and blue huckleberry are also prized; while the smoke-dried fruits of Vaccinium myrtillus, and V. stamineum, Linn., are largely stored for winter food.

History and Habitat.—The Bearberry is indigenous to North America, where it extends from New Jersey, Pennsylvania, Wisconsin, and Northern California,
northward to the Arctic Circle. In Europe it extends northward from Northwestern Ireland, Yorkshire, and Central Russia; in Asia also northward from Lower Siberia and Kamtschatka, its northerly range includes Iceland and Greenland. Its choice of growth is barren, but healthy ground, among rocks, where it flowers in May.

The principal substitutive leaves for the Uva-Ursi of commerce are those of *Vaccinium Vitis Idea*, Linn., of which Mr. J. H. Sears says:* "This is the plant that the Shakers gather instead of the Uva-Ursi; they go 40 or 50 miles for it when Uva-Ursi is abundant in their own ground. Uva-Ursi is common at Groton, Mass.; still the Shakers of that vicinity go to Danvers, where there is a small patch of *Vitis Idea*, which they gather instead." Comparing the leaves of specimens sent by Mr. Sears, I find the following distinction:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade, oblanceolate to oblong, never spatulate narrowed, as in Vitis Idea; reticulately broad-veined beneath, not dotted.</td>
<td>Blade, narrowly oblanceolate, seldom, if ever, tending toward oblong; very distinctly black-dotted and narrow-veined beneath.</td>
</tr>
</tbody>
</table>

Uva Ursi is an ancient astringent, though used but little until the 13th century by the "physicians of Myddfai." Clusius described the plant, in 1601, as the "Αρχέτον σταφυλῆ of Galen, useful as a hemostatic; it was not much used, however, until about the middle of the eighteenth century, when it began to prove, in the hands of De Haen and Gerhard, an excellent remedy in nephritic disorders. It was admitted to the London Pharmacopoeia in 1763. From this time it came into more or less general use as an astringent tonic and diuretic in various diseases, particularly, however, in dysuria, chronic vesical catarrh, cystitis with or without ulceration, calculous disorders, and kindred affections, as well as in irritations of the genital tracts, such as gleet, gonorrhoea, leucorrhoea, blenorhœa, etc. In all these disorders, however, it proved itself simply palliative in most cases, and many times fell into disuse. Dr. Bourin, of Oxford, recommended it highly in phthisis, but it only abated the hectic fever from reduction of the heart’s action. In late years it has been called attention to as a uterine excitant, very useful in prolonged parturition from atony; it is claimed that it is fully as sure as Secale, while the contractions resulting are more prolonged, while less painful, and dangerous to the child. The general dose in nephritic complaints has been: of the powdered leaves, Ἠ to ὅ, and of the decoction, *coch. mag.* ῥ to ῧ, *quater in die*; and in parturition, grs. XV, in infusion, a cupful every hour, one, or at most two doses, being fully sufficient.

The American Aborigines smoke the dried leaves with tobacco, making a mixture called *Sagack-homi* in Canada, and *Kinikinik* among the Western tribes; this is the *Larb* of the Western hunters.

* In a letter from Peabody Academy of Science to the author.
The leaves of Uva-Ursi are officinal in the U. S. Ph., as well as *Extractum Uva-Ursi Fluidum*; in Eclectic practice the preparation is *Decoctum Uva-Ursi*.

PART USED AND PREPARATION.—The fresh leaves, particularly those of the sterile branches, gathered in September or October, are to be chopped and pounded to a pulp and weighed. Then take two-thirds' part by weight of dilute alcohol, add to it the pulp with constant agitation, and strain the whole through a piece of new linen. The grainy menstruum thus obtained should be allowed to stand eight days, in a well-stoppered bottle, in a dark, cool place, before filtering.

The tincture obtained by filtration should be opaque, and have, in thin layers, a deep blackish-brown color by transmitted light; its odor should be heavily herbaceous and slightly terebinthiac; its taste extremely astringent and slightly bitter; and its reaction acid.

CHEMICAL CONSTITUENTS.—According to many observers, especially Prof. Murray and Dr. J. S. Mitchell, water is the best menstruum with which to extract the principles of this plant. The large amount of tannin contained in the leaves causes them to be extensively gathered in Iceland, Sweden, and Russia for tanning fine grades of leather.

Arbutose.—Treat the mixture of several successive decoctions of the coarsely-powdered leaves of Uva-Ursi with subacetate of lead, thereby precipitating the tannin and extractive matters. Decolorize the liquid with sulphydric acid, and evaporate quickly. This process decomposes a certain quantity of arbutin and a sticky crystalline mass is produced (Arbutose), containing 55 per cent. *arbutin*, 35 per cent. glucose, and 10 per cent. water. After drying this body in air as far as possible, and treating it with charcoal, followed by successive quantities of alcohol and distilled water, crystallized arbutin may be obtained.

Arbutin,\[C_{25}H_{34}O_{14} \]—This glucoside, in an impure state, was first determined by Hughes\[8\] and called by him *Ursin*; Kawalier, however, in 1853, isolated the body in a pure state, and gave it the name it now bears. Arbutin crystallizes in handsome, white, shining, radiate forms, odorless, bitter, and neutral; they lose water at 100° (212° F.), fuse at 160° (338° F.), are soluble in water, slightly soluble in alcohol, and insoluble in ether. By heating the crystals with peroxide of manganese they are resolved as follows:

\[
\text{Arbutin,} \quad \text{Kinone,} \quad \text{Formic Acid,} \quad \text{Water.}
\]

\[
C_{25}H_{34}O_{14} = 4C_6H_4O_2 + CH_2O_2 + 4H_2O.
\]

Kinone,|| C_6H_4O_2.—This very volatile body readily sublimes in brilliant golden-yellow acicular crystals, possessing a suffocating smell. They are slightly soluble in cold, freely soluble in hot, water, in alcohol, and in ether.

\[9\] Quinone.
Arbutin, during its passage through the body, undergoes the following change,* which is also brought about outside the body by the action of emulsin, or by boiling with dilute sulphuric acid:

\[
\text{Arbutin.} + 2\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + \text{C}_6\text{H}_4(\text{OH})_2 + \text{C}_6\text{H}_4(\text{OH}.\text{OCH}_3).
\]

Hydrokinone, †\text{C}_6\text{H}_6\text{O}_2.—This dioxybenzene forms in colorless rhombic prisms, melting at 169°–172° (336.2°–341.6° F.), and subliming, partly decomposed, at higher temperatures.

In the mother-liquor, after the crystallization of Arbutin, the following substances are found:

Ericolin, \text{C}_{34}\text{H}_{56}\text{O}_{21}.—This amorphous, very bitter glucoside results as a yellowish-brown mass, softening at 100° (212° F.), and resolving, under the action of dilute sulphuric acid, as follows:

\[
\text{Ericolin.} + 4\text{H}_2\text{O} \rightarrow 4\text{C}_6\text{H}_{12}\text{O}_6 + \text{C}_{10}\text{H}_{16}\text{O}.
\]

Ericinol, \text{C}_3\text{H}_4\text{O}, is a yellowish, or nearly colorless resinifying oil, having a peculiar odor.‡ It also exists free in the volatile oils of many Ericaceae; that from *Ledum* having a blue-green color, a disagreeable odor, a burning and bitter taste, and boils at 240°–250° (464°–482° F.). On boiling it with hydrated lime it yields a hydrocarbon of the composition \text{C}_{20}\text{H}_{32}.§

Urson, \text{C}_{30}\text{H}_{32}O_2.||—This colorless, tasteless, crystalline body melts at 198°–200° (388.4°–392° F.), sublimes at higher temperatures without visible change, is insoluble in water, and slightly soluble in alcohol and ether.§

Gallic, or *Trioxybenzoic,* Acid, \text{C}_7\text{H}_6\text{O}_3(\text{OH})_3.—This acid occurs in a free state in this and many other plants, and, in combination with tannic acid, in numberless others; it dissolves in 100 parts of cold water, from which it crystallizes in fine, silky needles, slightly acid and astringent. Gallic acid gives a deep blue color with ferric salts, melts at 200° (392° F.), and resolves at 210° (410° F.), as follows:

\[
\text{Gallic Acid.} + 3\text{H}_2\text{O} = \text{C}_6\text{H}_6\text{O}_3 + \text{CO}_2.
\]

Tannin.—This glucoside is generally considered to have the composition \text{C}_{14}\text{H}_{40}\text{O}_9, which proves it an anhydride of gallic acid, and its true name Digallic Acid.¶ The difficulty of obtaining tannin pure renders its composition, however, somewhat doubtful; when as pure as possible it results as a porous, greenish-yellow, friable mass, freely soluble in water, less so in alcohol, and insoluble in ether. The tannic acids, so called, are a group of bodies widely diffused through the vegetable kingdom, the species containing them usually lending a portion of

† Gmelin, *Chem.*, xvi, 28.
‡ Wittstein.
§ Trommsdorf.
their name to specify the body as found in them—(Caffe-tannic Acid, Quinotannic Acid, Catechu-tannic Acid, Kino-tannic Acid, etc.). With gelatine, these tannins form an insoluble compound; and with ferric chloride they yield bluish-black or green precipitates. They combine readily with animal skin, giving it the property of resisting putrefaction, which forms part of the process called tanning.

Resin, gum, pyrocathechin, extractive matters, and the usual plant constituents, are also found.†

PHYSIOLOGICAL ACTION.—Should we prescribe on the palliative principle, and at the same time believe in disinfection by killing germs, I could hardly point to a drug more adapted to diseases of the kidneys, bladder, and urethra than arbutin, which is changed in the renal tract to hydrokinone, a sort of phenol, which is in itself a germicide, the arbutin being more or less innocuous and at the same time a diuretic; it has, however, caused an eruption of the skin.‡

Uva-Ursi itself causes vomiting and purging, involuntary passage, bloody and green urine, and reduces the heart's action; further than this little is known of its direct effects.

DESCRIPTION OF PLATE 100.

1. End of a flowering branch.
3. Leaf, under surface.
4. Flower.
5. Longitudinal section of flower.
6. Pistil.
7. Stamen, front and side view.
8. Drupe.
9. Pyrenæ consolidated into a stone.
10. Transverse section of a pyrena.
11. Longitudinal section of a seed.
12. Horizontal section of a seed.
13. Section of ovary.

(4-15 enlarged.)

* See page 40-2.
‡ Lewin, *ibid.*
Epigaea Repens, Linn.
NERD—ERICACEÆ.

Tribe.—ANDROMEDÆ.

GENUS.—EPIGÆA, LINN.

SEX. SYST.—DECANDRIA MONOGYNIA.

EPIGÆA.

TRAILING ARBUTUS.

SYN.—EPIGÆA REPENS, LINN.

COM. NAMES.—TRAILING ARBUTUS, MAY FLOWER, GRAVEL PLANT, GRAVEL WEED, GROUND LAUREL, MOUNTAIN PINK, WINTER PINK.

A TINCTURE OF THE FRESH PLANT EPIGÆA REPENS, LINN.

Description.—This fragrant spring flower, blossoming amid the verdure of its previous year's growth, is prostrate or trailing* from a mass of perennial, red-brown, fibrous roots thickly beset with a tangle of rootlets; the stem is rounded and conspicuously hairy, the bark and hairs having a rusty color. Leaves alternate, evergreen, reticulate, ovate-cordate and entire, from 1 to 2 inches long, and relatively one-half as wide, the edges and under surface rusty hairy. Inflorescence apical or axillary; the flowers spring from dry, scaly bracts, and have a delicate pink, a deep rose-color, or are in some cases white, and emit a fragrant, spicy aroma. Sepals 5, dry, nearly separate, ovate-lanceolate, acute. Corolla monopetalous, salver-form, with 5 ovate, spreading lobes, the tube hairy inside. Stamens 10, shorter than the corolla; filaments hairy at the base; anthers linear, opening longitudinally; pollen of compound grains as in the preceding, but smaller. Ovary globular, depressed, 5-celled, many-seeded; style slender, forming a zone about the minutely 5-lobed stigma. Capsule 5-lobed, 5-celled, 5-angled, many-seeded, inclosed in the persistent calyx; placentæ large, 2-celled; seeds ovate.

History and Habitat.—Upon rich, damp, mossy banks throughout the central part of North America east of the Mississippi, under the shade and protection of low pines and hemlocks, in the early sunny days of spring, sometimes even peeping from under a snow-bank, appear the sweet-scented flowers of this much-sought-after little plant; so closely do the prostrate spreading stems cling to and mingle with the mosses, to which they in their rusty hairiness bear great similitude, that one of its common names in some localities is Moss Beauty. Epigaea flowers until May, and ripens its fruit in July.

It is stated that in lithic acid gravel, and some forms of nephritis, cystitis and vesical catarrh, its use has often been of greater benefit than uva-ursi or buchu.

* ını, upon, yâ, the earth.
Epigaea has no place in the U. S. Ph. In the Eclectic Materia Medica its officinal preparations are *Extractum Epigaeæ Fluidum*, and *Infusum Epigææ*; it is also the principal component of *Infusum Epigææ Compositum*, together with Eupatorium purpureum, Aralia hispida, and Radix althææ officinalis, this being one of their much-used diuretics.

PART USED AND PREPARATION.—The fresh leaves, or the whole plant gathered when budding to blossom, being chopped and pounded to a pulp and weighed, two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it, and the rest of the alcohol added. After thorough succussion the whole is poured into a well-stoppered bottle and allowed to stand for eight days in a dark, cool place. The tincture is then decanted, strained and filtered.

Thus prepared it is opaque, showing in thin layers a deep brown color; it has a pleasant woody taste, is slightly astringent, and of a decided acid reaction.

CHEMICAL CONSTITUENTS.—The three glucosides, *ursin*, *ericolin*, and *arbutin* (vide Uva-ursi, 100). *Formic acid* and a body having properties similar to *gallic acid* have been determined in this plant.

Tannic Acid.—The amount of this body existing in epigæa is given by Bowman as 3.5 per cent.

Ericinol.—C_{19}H_{16}O, a pale-yellow, aromatic oil, is also present.

PHYSIOLOGICAL ACTION.—Epigæa, so far as is determined at present, shows no important symptoms of physiological disturbance of the system. The provings are scanty; the only one so far published was made upon myself, and may be found in the "Hom. Physician," Oct., 1881, vol. 1, No. 10, pp. 486-9.

DESCRIPTION OF PLATE 101.

1. Flowering branch, from Waverly, N. Y., April 3, 1880.
2. Flower showing calyx (enlarged).
3. Section of flower (enlarged).
4. Stamen (enlarged).
5. Pollen grains x 380.
Gaultheria Procumbens, Linn.
N. ORD.—ERICACEÆ.

Tribe.—ANDROMEDEÆ.

GENUS.—Gaultheria, * Kalm.

SEX. SYST.—DECANDRIA MONOGYNIA.

GAULTHERIA.

WINTERGREEN.

SYN.—Gaultheria procumbens, Linn.; Gaultheria humilis, Salisb.; Gautiera repens, Raf.

COM. NAMES.—CREEPING WINTERGREEN, CHECKER BERRY, PARTRIDGE BERRY, BOX BERRY, SPICE BERRY, TEA BERRY, MOUNTAIN TEA,† JERSEY TEA, GROUND HOLLY, AROMATIC WINTERGREEN, GROUSE BERRY, DEW BERRY, RED BERRY, HILL BERRY; (FR.) THE du CANADA; (GER.) BERTHEE.

A TINCTURE OF THE FRESH LEAVES OF GAULTHERIA PROCUMBENS, LINN.

Description.—This well-known perennial, spicy-aromatic evergreen grows, in its upright height, from 3 to 5 inches, the true stem creeping, generally below the surface, and resembling a root. The flowering branches upright, stem-like, naked below and leafy at the top. Leaves alternate, upon very short petioles, obovate or oval, with a wedge-shaped base and very finely serrate edges; thick, smooth and shining. Inflorescence axillary; flowers usually single, sometimes more, upon nodding, two-bracted pedicels from the base of the upper petioles. Calyx five-lobed. Corolla inflated-cylindrical or pear-shaped, hairy within, with five small revolute teeth. Stamens ten, included within the tube of the corolla; filaments flat, hairy, curving toward the style; anthers large, introrse, two-celled, with two awns at the apex of each cell, opening by a terminal pore. Ovary smooth, five-lobed, five-celled, depressed, situated upon an hypogynous disk; placenta axillary; style simple, cylindrical, thick, longer than the stamens; stigma blunt, apparently entire, but in reality faintly marked into five lobes. Fruit a depressed, five-lobed, -celled and -valved, many-seeded pod, invested, when ripe, by the now thickened and fleshy calyx, thus forming a globose, bright red, edible berry, having a depression at its apex, surrounded by crenations formed of the thickened calyx teeth. Seeds situated upon the axis, minute, very irregularly shaped, the average being rounded-triangular, with concave or convex surfaces; testa light-yellow, with fine hexagonal reticulations. A description of the Ericaceæ will be found under Uva-Ursi, 100.

* Dedicated to Dr. Gaultier of Quebec. The orthography of whose name, after passing through botanical works as “Gaulthier” and “Gautier,” was finally settled by the records of Quebec, searched by Prof. Brunet, as “Gaultier.” (Gray.)

† The leaves of this plant formed one of the substitutes for Thea Chinensis during the Revolutionary War.
History and Habitat. — The wintergreen is indigenous to the eastern portion of the United States, growing from Maine to South Carolina, and westward to Central Kentucky, especially among the mountains in the shade of pines, flowering in July. The strange fruit hangs, and retains its bright color, until the next spring, then rots upon the pedicels or drops to the ground, thus allowing the escape of the seeds. The common names given to Gaultheria procumbens, Chimaephila umbellata, and Mitchella repens are very confusing, being interchanged in different sections of the country. The berries when fresh, and the young leaves, are very pleasant to the palate, being esteemed highly by many, and forming an article for sale by hucksters in some localities. They form, especially among the mountains of Pennsylvania, together with those of Mitchella, the principal food of partridges, grouse and deer, in the late autumn months.

Distillation of the oil of wintergreen, for use as a flavoring extract — to which its principal commercial value is due — is confined to men of limited means, in those districts where its growth is most abundant. The apparatus used is simple and movable, being shifted as the supply of leaves gives out. It consists usually of a copper whiskey-still. This is placed near some rivulet with a sufficient fall to keep the cooler filled. It is entirely invested by brick, with the exception of the cap, filled with leaves covered with water, and heated by an open fire beneath. The volatile oil, together with the steam, passes through the condensing worm into the receiver, which is kept filled with water. The oil is collected by a separating funnel, placed in the bottom of the receiver, and the water used over and again to economize the product. The average yield is ten pounds from a ton of the leaves; greater in dry seasons.

Most of the so-called oil of wintergreen is made from young birch trees (Betula lenta), in a similar manner to the process described above. Mr. G. W. Kennedy decides* that there is but little variance between the oil of wintergreen and that of birch. This, as far as he determined after many tests, consists only in a slight difference in the boiling point.

Gaultheria is only mentioned in the U. S. Ph., no official preparation being given. In the Eclectic Materia Medica it meets with the same lack of popularity.

PART USED AND PREPARATION. — The fresh leaves, gathered in summer, are chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it and the rest of the alcohol added. The whole is then poured into a well-stoppered bottle and allowed to remain for eight days in a dark, cool place. The tincture is then separated by straining and filtering. Thus prepared, it is of a deep brownish red color by transmitting light through thin layers, or black and opaque when in quantity. It retains the pleasant odor of the plant. The taste peculiar to the plant is covered at first by its great astringency, but gradually becomes apparent as the natural condition of the tongue returns. Its acidity is marked.

CHEMICAL CONSTITUENTS. — The general constituents of this plant are the same as those described under Uva-Ursi, 100, viz., arbutin, urson, ericolin and tannin.

Oil of Gaultheria. This body is a mixture of the volatile oil of the plant, salicylate of methyl, gaultherilene and gaultheric acid, forming the heaviest of the known essential oils, its sp. gr. being 1.173. Unless purified by macerating in animal charcoal, it has a reddish color, and boils at 200° (392° F.).

Gaultherilene, C_{19}H_{16}. This hydrocarbon is one of the constituents of the mixed oil.

Gaultheric acid. Methyl-salicylic acid, C_{6}H_{4}\{\overset{\text{O,CH}_{3}}{\text{CO}_{2}H}\}. This methyl-ether of salicylic acid, is obtained from the oil of wintergreen through the agency of an alkali. It crystallizes in plates, melting at 98.5° (209.3° F.). It is isomeric with the next, from which it differs by being a strong acid.

Salicylate of methyl, C_{6}H_{4}\{\overset{\text{OH}}{\text{CO.CO.H}}\}. This body constitutes the principal part of the compound oil distilling over after the passage of the volatile body when the temperature is raised to 222° (431.6° F.). It exists as an oily liquid, possessing a very pleasant penetrating odor and a sweet, aromatic, refreshing taste. (Schorlemmer, Wittstein.) All of the above constituents are soluble in alcohol.

PHYSIOLOGICAL ACTION.—The following digest of the action of Gaultheria is from Dr. T. J. Gallaher Med. Ex., 8, 347) and Drs. W. E. Townsend and Hooker (Rec. Boston Soc. Med. Imp.), the first from an overdose of the oil, the last from large amounts of the essence: Stupidity, swelling of the tongue and very active inflammation of the stomach, attended with a highly morbid desire for food, with a painful tenderness in the epigastric region and violent retching and vomiting whenever anything entered the stomach; slow, laborious breathing, with loud respiration, but no stertor; hot skin, high pulse and restlessness.

DESCRIPTION OF PLATE 102.

2. A fruiting branch in October.
3. Flower (enlarged).
4. Flower (section enlarged).
Kálmia latifólia, Linn.
N. ORD. ERICACEÆ.
Tribe.—RHODOREÆ.
GENUS.—KALMIA, L. LINN.
SEX. SYST.—DECANDRIA MONOGYNIA.

KALMIA.

MOUNTAIN LAUREL.

SYN.—KALMIA LATIFOLIA, LINN.; CISTUS CHAMÆRHODODENDROS, ETC., PLUK.; LEDUM FLORIBUS BULLATIS, ETC., TREW.
COM. NÄMES.—MOUNTAIN LAUREL, AMERICAN LAUREL, CALICO-BUSH, SPOONWOOD, BIG IVY, ROSE LAUREL, ROUND-LEAVED LAUREL, SHEEP-LAUREL,† LAMB-KILL,† WICKE; (PR.) GRANDE KALMIE; (GER.) GROSS KALMIE.

A TINCTURE OF THE FRESH LEAVES OF KALMIA LATIFOLIA, LINN.

Description.—This beautiful evergreen shrub attains a height of from 4 to 10 or more feet. Stem smooth; branches more or less terete, irregular, and tortuous. Leaves more or less scattered but tending to alternation, they are thick, coriaceous, glabrous, dark and shining green both sides; in form they are elliptical or ovate-lanceolate, acute at both ends and entire. Inflorescence simple or clustered, naked, umbel-like corymb, terminal upon the branchlets; pedicels long, arising from leaf-like bracts; flowers clammy-pubescent. Calyx rotate, persistent, somewhat smaller than the fruit; limb 5-parted; teeth deltoid. Corolla somewhat hypocrateriform, infundibular, or campanulate; furnished with 10 mammæ, into the internal depressions of which the anthers are held until irritated; tube short; limb 5-lobed; lobes semi-ovate, acute. Stamens 10; filaments smooth, filiform; anthers 2-celled, each opening by a large apical pore or chink. Ovary globose; style terminal, filiform; stigma capitate. Fruit a globose, 5-celled, pubescent, coriaceous capsule; seeds many, oblong; testa thin and somewhat loose.

History and Habitat.—The laurel bush is indigenous to North America, growing from Canada and Maine southward and westward to Ohio, and on the mountains as far as Florida. Its large clusters of beautiful flowers, embosomed in the rich, dark green foliage so characteristic of the plant, is one of the most attractive points of beauty of our mountain woods in May and June. In southern Pennsylvania, on the Alleghanies, this shrub often attains the dimensions of a small tree, sometimes reaching as high as 30 feet. The wood when dry is hard and dense, somewhat like that of the box (Buxus), and is used for the manufacture of household implements, such as ladles, spoons, forks, etc.; for the handles of small tools, and for cog-wheels and the like.

* Peter Kalm, a Swedish botanist and a pupil of Linnaeus. † More properly names applied to K. angustifolia.
The previous uses of this plant in medicine were of a very limited character. A decoction was used in domestic practice for various forms of tinea capitis, psora and herpes; also in secondary syphilis. It has been recommended in inflammatory fevers as a cardiac depressor; its astringency was utilized also by the application of the drug in diarrhæas and hemorrhages of the bowels.

Kalmia is not officinal in the U. S. Ph.; in the Eclectic Materia Medica its preparations are: Decoctum Kalmiae; Tinctura Kalmiae; and Syrupus Phytolaccae Compositus.*

PART USED AND PREPARATION.—The fresh leaves, gathered while the plant is in blossom, are treated as in the preceding species. The tincture thus prepared is opaque; in thin layers it has a deep brownish-orange color; it retains the peculiar odor of the bruised leaves, has an extremely astringent and somewhat bitter taste, leaves a slightly scalded sensation upon the tongue, and has a strong acid reaction.

CHEMICAL CONSTITUENTS.—A special active principle has not as yet been determined in this plant. The analyses of Bigelow,† Bullock,‡ and Kennedy,§ resulted in the determination of Arbutin,‖ tannic acid,‖ fat,‖ gum,‖ wax,‖ an acid body uninvestigated,‖ extractive,‖ yellow coloring matter,‖ arabic,‖ and the usual plant constituents.

PHYSIOLOGICAL ACTION.—Laurel leaves have always been deemed poisonous, especially by the Indians and the laity. Their action upon sheep, especially lambs, has given two of its vernacular names, Sheep-laurel and lamb-kill. Catesby says:¶ "deer feed upon its green leaves with impunity; yet when cattle and sheep, by severe winters deprived of better food, feed on the leaves of this plant, a great many of them die annually." And Kalm gives the following: ** "The leaves are poison to some animals, and food for others; experience has taught the people, that when sheep eat of these leaves, they either die immediately, or fall very sick, and recover with great difficulty. The young and more tender sheep are killed by a small portion, but the older ones can bear a stronger dose. Yet this food will also prove mortal to them if they eat too much of it. The same noxious effect it shows in regard to calves. . . . they fall very sick, swell, foam at the mouth and can hardly stand. The sheep are most exposed to be tempted with these leaves in winter, . . . being greedy of all greens; especially if snow still lies upon the ground. Horses, oxen, and cows, which have eaten them, have likewise been very ill after the meal." He farther adds that these leaves form a winter food for stags, and if killed during the time of feeding and the entrails given to dogs to eat, they "become quite stupid, and, as it were, intoxicated, and often fall so sick that they seem to be at the point of death; but the people who have eaten the venison have not felt the least inconvenience." Dr. Bigelow states, as do other observers, that it is a common belief that the flesh

* Phytolacca, Ampelopsis, Cimicifuga, and Kalmia.
¶ Kennedy (see Uva Ursi, 100).
‖ Materia Medica, vol. 1, p. 335.
of the Partridge, after feeding upon the leaves and fruits, becomes of itself poisonous; this Wilson the ornithologist denies on trial, though other observers declare it a fact. Dr. Bigelow judges that the illness caused in animals is due to the indigestibility of the plant; other authors think that those persons made ill by eating the flesh of the partridge under the circumstances mentioned, are made so from a decomposed state of the meat. Beck* appears to deem the flesh poisonous from eating the berries as above.

From the experience of nearly all persons who have experimented upon themselves with a tincture or decoction of the leaves, it is obvious that the effects produced on cattle after grazing on the leaves, and on persons eating of “poisoned” partridges, are due to the plant itself, not to indigestion or putrefaction. Dr. Bigelow’s later observations,† agree in toto with our provings. He gives the following as its action: “The flesh of the bird impairs the functions of the brain and acts directly as a sedative poison, secondarily affecting the digestive and circulatory organs.” The symptoms arising in those proving the drug are: Vertigo and headache; almost complete loss of sight; pale, somewhat livid countenance; salivation and difficult deglutition; thirst, nausea and vomiting, with oppression and pressure in the region of the stomach; difficult respiration with great palpitation and fluttering of the heart, followed by an irregular, feeble, and slow pulse; weakness, weariness and pains in the limbs; coldness of the surface and great prostration.

Description of Plate 103.

2. Flower.
3. Pistil.
4. Stamen.
5. Pollen x 200.
(3 and 4 enlarged).

Kalmia Angustifolia, Linn., seems from the experience of others to be the most poisonous species, its habitat is the same as that of K. latifolia. It may be the confusion of species that causes so much doubt upon the questions of toxicology. It is stated‡ that a few drops of a saturated tincture of the plant caused the death of a rattlesnake when poured upon it. We cannot be certain that our preparations and those of the provers were made from K. latifolia alone; therefore I append a differentiation for future reference in experimentation, judging that a thorough revision and re-proving of the two species separately, would be vastly important to us.

K. Latifolia.

(Calico-bush, Mountain Laurel.)

Height 4 to 30 feet.
Leaves alternate or scattered, ovate-lanceolate or elliptical, acute, bright, rich green both sides.
Inflorescence terminal, clamy, pubescent; flowers pink to nearly white.
Fruit a depressed glandular capsule.

K. Angustifolia.

(Sheep-laurel, Lamb-kill.)

Height 2 to 4 feet.
Leaves opposite or in whorls of three, narrowly oblong, obtuse, light green above, pale to whitish beneath.
Inflorescence lateral, slightly glandular; flowers red, and nearly two-thirds smaller.
Fruit a depressed smooth capsule, upon a recurved pedicel.

CHIMÁPHILA UMBELLÁTA, Nutt.
CHIMAPHILA.

PIPSISSEWA.

SYN.—CHIMAPHILA UMBELLATA, NUTT., CHIMAPHILA CORYMBOSA, PURSH., PYROLA UMBELLATA, LINN., PYROLA FRUCTICANS, PARKINSON.

COM. NAMES.—PIPSISSEWA, WINTERGREEN, PRINCE'S PINE, BITTER WINTERGREEN, GROUND HOLLY; (FR.) PYROLE OMBELLÉE; (GER.) DOLDENBLÜTHIGES HARNKRAUT, ODER WINTERGRÜN.

A TINCTURE OF THE FRESH PLANT CHIMAPHILA, EITHER UMBELLATA OR MACULATA, OR BOTH, AS THE PROVINGS HAVE BEEN MADE WITHOUT DISCRIMINATION.

Description.—This small, slightly woody, nearly herbaceous evergreen perennial, springs from a long, cylindrical, creeping, yellowish root, about one-eighth to one-quarter of an inch in diameter, giving off numerous fine rootlets, and sending up many branches, which terminate in leafy and flowering stems alternately. Stem simple, or sometimes branched at the base, 3 to 6 inches high before the flowering season. Leaves mostly in several imperfect whorls, or sometimes scattered about the upper portion of the stem; they are dark green above, paler below, thick, shining, wedge-lanceolate, acute at the base, sharply saw-toothed, amaculate, short-petioled, and from one and a half to two inches long, by one-quarter to one-half an inch broad. Peduncle from 3 to 6 inches long, erect, smooth, terminating in from 4 to 7 pedicels covered with a very fine down, nodding in flower, erect in fruit, and forming a loose umbel or corymb. Calyx much smaller than the corolla; sepals five, blunt, persistent, slightly hairy. Corolla of five petals rounded, concave and spreading. Stamens ten, free, inserted under the pistil; filaments at first convex, obovate, fleshy, then concave, filiform and hairy; anthers large, extrorse in the bud but becoming inverted in flower, more or less conspicuously 2-horned, 4-celled, and opening by two pores; pollen grains white, compounded of four more or less globose granules. Ovaries 5, connected about a fleshy receptacle in such a manner as to form a depressed globose mass, surrounded at its base by a glandular zone; ovules many, small, anatropous; style very short, rounded and wedge-shaped, the apex entering into the summit of the substance between the ovaries; stigma broad, convex, discoid, faintly marked by

* xtiπa, winter, φίλος, to love.
5 crenations.

Pod depressed-globose, 5-lobed, 5-celled and 5-valved, loculicidal from the apex downward; **seeds** innumerable, minute.

Chimaphila Mandshurica, Pursh.—This species differs from the foregoing as follows: Peduncles from 1 to 5 flowered. Leaves ovate-lanceolate, obtuse at the base, the edges widely toothed, their upper surface white-maculate. A description of the natural order will be found under Arctostaphylos Uva-ursi.

History and Habitat.—This hardy little plant seeks the deep shaded portion of woodlands, where it flourishes best in the loamy formations of rotted leaves. It abounds throughout the central portion of North America, the forests of Siberia and the Northern countries of Europe. It blossoms here in June and July, fruiting in September. It is used among the aborigines of this country as a tonic and diuretic, as well as for rheumatic and scrofulous disorders, and latterly as an application to scrofulous and other open sores. Chimaphila is still retained in the U. S. Ph. as *Extractum Chimaphilae Fluidum*. In the Eclectic Materia Medica its official preparation is *Decoctum Chimaphilae*; it is also a component of *Syrupus Stillingiae Compositus*.

PART USED, AND PREPARATION.—The fresh plants while in flower are chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well it is poured into a well-stoppered bottle and allowed to stand eight days in a dark, cool place. The tincture is then decanted, strained and filtered. Thus formed it is opaque; thin layers have a deep, rich, reddish-brown color; it is decidedly bitter, slightly astringent, and has an acid reaction to litmus.

CHEMICAL CONSTITUENTS.—The chemistry of this plant corresponds with that of Arctostaphylos Uva-ursi (vide Uva-ursi, plate 100), differing probably little except in also containing the following principle, determined by Fairbank:

Chimaphilin.—On the aqueous distillation of the stems in a retort, a deposit of golden-yellow, odorless, tasteless crystals takes place upon the neck, the chemical nature of which has not yet been determined; their physical features are: a slight solubility in water, and a free solution in alcohol. The percentage of tannin in this plant is somewhat less than in Uva-ursi.

PHYSIOLOGICAL ACTION.—Here again Uva-ursi should be consulted. Chimaphila does not cause nausea and vomiting to the extent of Uva-ursi, while its diuretic action is greater. Its physiological action as such is undetermined.

Description of Plate 104.

1. Whole plant in fruit.
2. Flowering stem, Binghamton, N. Y., June 26, 1883.
3. Stamen (enlarged).
4. Fruit (enlarged).
5. Seed (enlarged).
MONÓTROPA UNIFLÓRA, Linn.
N. ORD.—ERICACEÆ.
S. ORD.—MONOTROPEÆ.
GENUS.—MONOTROPA,* LINN.
SEX. SYST.—DECANDRIA MONOGYNIA.

MONOTROPA.

INDIAN PIPE.

SYN.—MONOTROPA UNIFLORA, LINN.; MONOTROPA MORISONIANA, MICHX.; MONOTROPA MORISONI, PERS.
COM. NAMES.—INDIAN PIPE, TOBACCO PIPE, PIPE PLANT, CORPSE PLANT, ICE PLANT, BIRD’S NEST;† NEST PLANT, FIT-ROOT, CONVULSION-ROOT, OVA-OVA; (GER.) EINBLÜHTIGE MONOTROPA.

A TINCTURE OF THE WHOLE FRESH PLANT MONOTROPA UNIFLORA, L.

Description.—This strange waxy or bluish-white, fleshy, inodorous, semi-parasitic herb, grows from 2 to 8 inches high. Rootlets very numerous, forming a ball of densely-matted fibres. Stems several from each clump of rootlets, simple, subcylindrical and smooth. Leaves, none; their place supplied below by numerous small triangular scales, which gradually enlarge and become ovate-spatulate foliaceous bracts toward the summit of the stem, where they pass into the inflorescence, composed of a single, terminal, declined flower, which becomes horizontal, then inclined as it performs its life-work, and rigidly erect in fruit. Flower slightly pubescent, entirely devoid of color except where the yellow anthers and flesh-colored pistil are disclosed. Sepals replaced by 2 to 5 bracteolate, irregular, lanceolate, caducous bodies; petals 5, erect, gouge-shaped, saccate at the base, marcescent. Stamens 10, shorter than the petals, each alternating at the base with a short, recurved, nipple-like process of the base of the ovary; filaments awl-shaped, pubescent; anthers horizontal, reniform, becoming one-celled and opening by transverse chinks; pollen simple, showing 1 to 2 translucent depressed spots.† Style columnar, short and thick; stigma naked, discoid, obtusely 5-angled, with a funnel-form depression in the centre. Fruit an erect, ovoid, 8- to 10-grooved, 4- to 5-celled loculicidal pod; placenta large and sarcous; seeds very numerous, minute, subulate; testa loose, cellular, translucent. A description of the Ericaceae will be found under Uva Ursi 100.

History and Habitat.—The Indian pipe grows in deep, rich, shady woods—especially those in which the beech abounds—from Florida to Mississippi, and thence northward, flowering in July in the North and from August to September in the South. This curious herb well deserves its name of corpse plant, so like is it to

* Míos; monos; τρόπος, tropos; one turn, from the facing of the flower.
† More applicable to Daucus carota, on account of the resemblance of the fruiting umbels to that structure.
‡ The pollen of Monotropa uniflora bears a striking resemblance in this regard to that of Pendicularis Canadensis.
the general bluish waxy appearance of the dead; then, too, it is cool and clammy to the touch, and rapidly decomposes and turns black even when carefully handled. The whole plant when wounded—especially, however, the floral envelope—emits a clear glutinous fluid. Attempts to preserve it in alcohol turn it a bluish-black, and tinge the preservative a deep reddish-violet hue, while the drying process turns it jet-black, leaving very little semblance to its natural appearance. The medical history of the plant begins with its use by the American Aborigines as an application in "sore eyes:" they valued a mixture of the juice with water highly as a soothing and often curative measure. Of this property Dr. Kunze* says in corroboration: "This is a drug very highly recommended† for overcoming nervous irritability, epilepsy, chorea, etc., when used in large doses—inwardly, of course—and for ophthalmic as well as other inflammations of delicate mucous surfaces outwardly applied, either in its fresh state or the preserved juice. I have myself used it very much in ordinary cases of inflamed eyes, both chronic and acute, and have never seen, or even before heard any evil effects following the most indiscriminate use.‡ Have applied it to the eyes of infants when only three days old, in Ophthalmitis purulenta infantum, as well as in old age in every variety of so-called constitutions, and even where not successfully employed no ill effects have ever been observed thereafter." He farther On describes an incidental cure which is of interest botanically and medically: "Fourteen years ago—it was in the early part of July—I went woodcock-shooting with two friends, near Hackensack, N. J., and while taking some luncheon in a beech grove along the course of Saddle River, I found a large patch of ground literally covered with Monotropa uniflora in full bloom; it covered a space some five feet wide by nine feet long, a beautiful sight of snow-white stems and nodding flowers. Being in need of some just then, I proceeded to fill my game-bag, and to the question, what it was used for, answered: 'Good for sore eyes;' little thinking that the party addressed was suffering from a chronic inflammation of the eye-lids, the edges of which had a very fiery-red appearance. No sooner said than he proceeded to take in his game-bag a supply also, and he made very good use of it, as I ascertained afterwards. His inflamed lids were entirely cured in four weeks' time, and he has had no further trouble since, by applying the fresh juice of the stems he obtained while it lasted." Dr. King mentions the drug§ as "tonic, nerve, sedative and antispasmodic." The former uses of the herb in spasms of children, epileptiform and chorea-like, gave it the popular names so characterizing it. Dr. Stewart claimed that the dried herb was an excellent substitute for opium, "easing pain, comforting the stomach, and causing sleep." In spasmodic affections the usual dose is a teaspoonful of the dried root in powder; to this is often added the appropriate dose of valerian.

No mention is made of this drug in the U. S. Ph., and no official preparation appears in the Eclectic Materia Medica.

† In King's Am. Disp., and Howard's Botanic Medicine.
‡ This clause he uses in discussing Mr. A. H. Young's case of poisoning, which I shall quote under the proper rubric.
§ American Dispensatory, 1880, p. 530.
PART USED AND PREPARATION.—The whole fresh flowering plant is treated as in the preceding drug. The resultant tincture has a brilliant orange-red color by transmitted light, a bitterish odor, a decidedly sweet taste, and a slightly acid reaction.

CHEMICAL CONSTITUENTS.—No analysis of this plant has, as far as I am able to determine, been made. The European species, also found here, Monotropa hypopitys, a tawny, many-flowered form, yields a volatile oil and Salicylate of Methyl.*

PHYSIOLOGICAL ACTION.—The only account of poisoning by this plant is that of Mr. A. H. Young.† This case was discussed by Dr. R. E. Kunze, as before mentioned, who was of the opinion that in the gathering the young lady handled Rhus toxicodendron; Mr. Young then again consulted the patient‡ and found that she was not susceptible to Rhus poison, and farther, that she had not personally gathered the plant, but met with her ill-fortune while examining it at home. As Mr. Young had the identical plant in his herbarium, he searched for rootlets of Rhus tox. clinging to the plant, but found none, and states it as his conviction that the case, though standing alone, is veritable. He says: “During the month of September a young lady brought me a plant which she said had poisoned her, and she desired its name. With some surprise, and perhaps I should have had none after considering its fostering food and close resemblance to the Fungi, I found the plant to be Monotropa uniflora. The circumstances of the case are as follows: The young lady while examining the plant, accidentally crushed the stem, and some of the juice was driven upon her lips. The mucous portions which were somewhat chapped became very much irritated, and began to inflame and swell considerably, while in two or three places upon the epidermal skin of the lip small ulcerous sores were formed. The effect remained some four or five days and then gradually healed. The whole effect was very much like a mild case of poisoning with Rhus toxicodendron.” As we have no proving of this drug, we cannot as yet corroborate this case; there is, however, no plant in our country that promises so good results from provings.

Description of Plate 105.

1. Whole plant, Binghamton, N. Y., July 21st, 1884.
2. Flower with petals removed.
3. Petal.
4 and 5. Anthers.
6. Pollen, x 300.
7. Pistil.
9. Longitudinal section of pistil.

(2-9 enlarged.)

* See Gaultheria, p. 102-3. † Bot. Gaz., 1878, Vol. iii, No. 1, p. 37. ‡ Ibid., No. 9, p. 79.
PRINOS.

BLACK ALDER.

SYN.—ILEX VERTICILLATUS, GRAY; PRINOS VERTICILLATUS, LINN.; P. GRONOVI, MICHX.; P. CONFERTUS, MCEN.

COM. NAMES.—BLACK ALDER, FEVER BUSH, WINTERBERRY, VIRGINIAN WINTERBERRY; (FR.) APALACHINE À FEUILLES DE PRUNIER; (GER.) VIRGINISCHE WINTERBEERE.

A TINCTURE OF THE BARK AND FRUIT OF ILEX VERTICILLATA, GRAY.

Description.—This upright or ascending, much-branched shrub, usually attains a growth of from 4 to 8 feet. Leaves thin and deciduous, not spiny, in form obovate, oval, or cuneate-lanceolate, acute at the apex and base, uncinately serrate, and downy upon the veins underneath; petioles about one-quarter the length of the blade. Inflorescence dioecious; flowers all short peduncled, white, appearing with the leaves. Sterile flowers in small axillary umbels; calyx-lobes ciliate; petals mostly 4 to 6; stamens 6 to 7; ovary abortive. Fertile flowers aggregated or solitary; petals mostly 5 to 8; ovary conical, about 6-celled; stigma 4- to 6-lobed. Fruit a globose, bright vermillion berry, about the size of a large pea, crowded upon the branches so as to appear whorled; nutlets about 6, smooth and even, or dorsally furrowed or ridged. Embryo minute, nearly globose.

Aquifoliaceæ.—This small order, to which Prinos is but lightly wedded, and represented in North America by but 2 genera and 14 species, is characterized as follows: Shrubs or trees with their leaves simple, mostly alternate, and generally coriaceous and evergreen. Flowers small, axillary, 4- to 8-merous, white or greenish, often polygamous by abortion. Calyx minute, free from the ovary, 4- to 9-toothed. Stamens as many as the divisions of the corolla and alternate with them, the filaments attached to their very base; anthers adnate, opening lengthwise. Corolla hypogynous, rotate, or almost or quite 4- to 8-parted, imbricated in the bud. Ovary 4- to 8-celled; ovules anatropous; stigmas 4 to 8 or united into 1, nearly sessile. Fruit a baccate 4- to 8-seeded drupe; seeds solitary in each cell, suspended; embryo minute; albumen fleshy.

Our only other proven species in this order is the South American Mate, or Paraguay Tea (Ilex Paraguayensis, St. Hil.), the leaves of which are used like Chinese tea, and are considered slightly nervine, diaphoretic, and diuretic. In

* The ancient name of the holly oak.
general medicine the following species are more or less useful: The English Holly (
Ilex aquifolium, Linn.), and the American co-species, *I. opaca*, Ait., have been
considered nearly equal to Peruvian Bark in intermittent fevers and jaundice. The
Cassena of the American aborigines, *I. Cassene*, Linn., and *I. Dahoon*, Walt.,
are emetic, and enter into the ceremonies of the natives as holy plants, which
the males only were allowed to use as purifiers of the body. The Carthaginian
Myginda Uragoga, Swartz., is said to be a most powerful diuretic. The juice and
leaves of the Indian *Monetia Barleroides*, Linn., are considered by Hindoo doctors
to be anti-catarrhal and anti-asthmatic; and the unripe fruit of the Brazilian *Ilex*
maccouqua, Linn., are so rich in tannin as to be used as a substitute for galls.

History and Habitat.—The Black Alder is common in thickets at the margins
of pools and marshy places, from western Florida northward; during its flower-
ing season, in April and May, it is hardly distinguishable, to those who are not
well acquainted with it, from the surrounding bush; but when the autumnal frosts
have deprived all vegetation of its leaves, then the fruiting plant stands out like a
flaming spot in the dreary waste, striking, even to the most careless observer, in
its beauty.

This is another of the growing list of plants handed down to us by the
aborigines, who used the bark both internally and externally as a tonic, astring-
gent, and antiseptic, and is probably as well known to domestic practice as any
indigenous shrub. In intermittent fever it has often proved as generally applic-
cable as Peruvian Bark, and in such low typhoid forms associated with diarrhoea,
and in later stages, where ulceration and hemorrhage are present, it is a very
valuable agent. In general debilitated conditions of the system after long fevers,
and where the body is depleted by exhausting discharges, it is also very useful, as
well as in gangrenous affections and jaundice. Certain forms of chronic herpetic
eruptions and ulcers are also benefited by its use as an external application. The
berries are purgative and vermifuge, forming one of the pleasantest adjuvants in
children's remedies, for the expulsion of lumbrici. Shoepf first noted the plant as
having the above field of utility, and also mentioned its usefulness in anasarca.

The bark is officinal in the U. S. Ph.; in the Eclectic Dispensatory the prepa-
ration recommended is *Decoctum Prinos*.

PART USED AND PREPARATION.—The fresh bark and fruit, gathered
before the first autumnal frost, are chopped and pounded to a pulp and weighed.
Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with
one-sixth part of it, and the rest of the alcohol added. The whole is then poured
into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place,
being shaken thoroughly twice each day. After decanting, straining, and filtering,
the resulting tincture has a greenish-brown color by transmitted light; an herba-
ceous odor; a bitter taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—Besides a bitter principle, the nature of which
has not yet been determined, this species contains about 4.8 per cent. tannin; a
resin soluble in alcohol, another insoluble in alcohol; coloring-matter; albumen; gum, and sugar.*

PHYSIOLOGICAL ACTION.—The berries caused nausea, vomiting, and purging, in two children who ate of them, but whom I had no further chance to watch. In a case reported† of the effects attending the ingestion of about twenty-five berries, the following symptoms supervened: Sensation of nausea in the stomach not amounting to real sickness nor interfering with the appetite; vomiting of bile without retching; profuse evacuation of the bowels, consisting of their natural contents, diluted with an immense quantity of greenish liquid, attended with no pain or uneasiness; another similar but less profuse evacuation followed in about half an hour, after which the patient felt remarkably well, but as though he had lost ten or twelve pounds in weight. Following this, his appetite and digestion seemed much better than usual.

DESCRIPTION OF PLATE 106.

1. End of a flowering branch, Binghamton, N. Y., May 5th, 1886.
2. Under side of leaf-margin.
3. Flower.
4. Calyx.
5. Stamen.
6. Pistil.
7. Fruiting branch.
8. Nutlet.
(2–6 and 8 enlarged.)

PLANTAGO MAJOR, Linn.
PLANTAGO.

PLANTAIN.

SYN.—PLANTAGO MAJOR, LINN.; PLANTA GOVLARIS, GER.; Ανθίζωςαν, DIOSCOR.
COM. NAMES.—PLANTAIN, BROAD-LEAVED PLANTAIN, RIB-GRASS, RIB-WORT, WAY-BREAD (WAY-BRED); (FR.) PLANTAIN ORDINAIRE; (GER.) GROSSER WEGETRITT.

A TINCTURE OF THE WHOLE FRESH PLANT, PLANTAGO MAJOR, L.

Description.—This cosmopolitan immigrant varies greatly in its growth, some individuals only attaining a height of 2 inches, others 18. Root perennial, fasciculate. Leaves all radical, broad, ovate, ovate-cordate or obleng, sometimes slightly toothed, 5 to 7-ribbed; petioles deeply channelled, smooth or slightly hairy. Inflorescence 1 to several long and slender, bracted, densely floral, sub-cylindrical spikes, each raised upon a naked scape; flowers all alike and perfect. Sepals 4, imbricated, persistent, membranaceous, and margined. Corolla whitish, thin, marcescent; lobes reflexed after flowering. Stamens 4, rarely 2, much exserted; filaments long filiform, lengthening suddenly when the anther is ripe; anthers 2-celled, early deciduous. Pistil dichogamous, i.e., protruding from the flower tube before the anthers are ripe;† ovary 2-celled; stigma more or less unilateral, fringed. Fruit a 2 to 16-seeded pyxis, opening by a complete transverse fissure, the top falling off like a cap, and the thin partition escaping with the seeds; seeds somewhat fusiform; albumen sarcous; embryo straight, enclosed.

PLANTAGINACEÆ.—This small anomalous family of low acaulescent herbs is principally represented by the genus Plantago. Its members are characterized by having: Leaves all radical and ribbed. Flowers spiked upon a simple scape; calyx 4-cleft, persistent; corolla tubular or hypocrateriform, scarious and veinless. Stamens 4, inserted upon the tube of the corolla alternate with its lobes; filaments persistent, long and weak. Ovary 2-celled; ovules amphiropous; style single, long, and stigmatose. Fruit a membranaceous pyxis; dehiscence circumscissile; seeds 1 to several in each cell; embryo large, mostly straight; albumen sarcous.

The mucilaginous principle of the seeds of Plantago renders them somewhat valuable in medicine. The Indian plantain Plantago Isphagula (P. decumbens, Forsk) furnishes seeds from which a mucilaginous drink is prepared and used as an emollient; this species is mentioned in the native Materia Medica. The seeds of

* The ancient Latin name. † A help in cross-fertilization.
the European and Barbarian *P. Psyllium*, the Hungarian *P. arenaria*, and the South European *P. Cynops*, are spoken of by Lindley as a good substitute for linseed and marsh-mallows. The leaves and roots of the common rib-grass *P. lanceolata* are considered expectorant and vulnerary; the Scottish Highlanders attach great value to this plant as a healing application to fresh wounds.

History and Habitat.—The common plantain grows in rich, moist soils, in Europe, India, and America, where it is considered truly indigenous north of Lake Superior. It flowers throughout the summer months, fruiting as it flowers. It is said that the American Indians gave this plant the name of "White Man's Foot," in allusion to its method of introduction, and its trait of accompanying thecivilizer and literally growing in his footsteps. This character also gave rise to the vulgarism "way-bred."

The previous medical uses of plantain are chiefly those of a general vulnerary and demulcent; thus it became in great demand in the coughs attending various pulmonary and bronchial diseases as well as an application to recent wounds and chronic sores. The seeds were used in the former instance, the leaves in the latter. A decoction of the roots was recommended by Bergius in tertian intermittent, one ounce to four being taken when the chill came on. An infusion of the seeds in milk has been much used by the laity to check various hemorrhages from mucous surfaces, diarrhoea, dysentery, and leucorrhoea. The fibrous strings in the petioles have been extolled as an almost certain cure for aching carious teeth, if placed in the ear on the affected side. It is said that these fibres turn black if the pain is relieved, but remain green if not. Boerhaave says that in his own experience he has found that plantain leaves placed upon the feet will ease the pain and fatigue engendered by long walks. Plantain has also been highly praised as an antidote to the effects of bites of venomous reptiles and insects; it is stated by Duncan to be one of the principal ingredients in the remedy of the negro Cæsar, for the discovery of which he received a large reward from the Assembly of South Carolina. To complete this review of the uses of this herb no better expression could be used than that of Mérat: "Enfin, on a porté la racine des plantains en amulet pour guérir ou prévenir une multitude des maladies."

PART USED AND PREPARATION.—The fresh plant, gathered when coming into flower, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-tenth part of it, and the rest of the alcohol added. After having stirred the whole, pour it into a well-stoppered bottle, and let it stand eight days in a dark, cool place.

The tincture separated from this mass by filtration is opaque, in thin layers it has a deep reddish-brown color by transmitted light. It retains the peculiar odor of the plant, has a sourish astringent taste and an acid reaction.

CHEMICAL CONSTITUENTS.—*Mucilage.*—This substance exists plentifully in the seeds of all species, from which it may be extracted by water, and pre-

* Dr. Reutlinger to Dr. E. M. Hale, *New Rem.,* p. 500.
† *New Edinburgh Dispensatory.*
‡ *Dict. de M. Med.,* Supplement, 1846, p. 567.
Precipitated from its watery solution (impure) by alcohol. Dry pure mucilage is a yellowish, tough, opaque body, swelling upon the addition of water, and finally dissolving into a ropy mass. The vegetable mucilages vary in their behavior toward reagents according to the plant from which they are extracted; they all, however, break down under the action of dilute sulphuric acid, first into gum, then sugar.

The whole plant has not been analyzed.

PHYSIOLOGICAL ACTION.—The principal symptoms caused by this drug are, according to Dr. F. Humphreys: headache; excessive digging, boring pain in carious teeth; severe dryness of the fauces and pharynx; colic; urging to urinate, with copious discharges; looseness of the bowels; weakness and oppression of the chest; restless sleep; and a strong fever, with a high pulse which finally becomes weak and intermittent.

Description of Plate 107.

1. Whole plant once reduced, Bergen, N. J., July 18th, 1879.
2. Flower.
3. Pistil.
4. Stamen.
5. Pollen, x 250.

(2-4 enlarged.)
ANAGÁLLIS ARVÉNSIS, Linn.
N. ORD.—PRIMULACEÆ.

Tribe.—PRIMULÆ.

GENUS.—ANAGALLIS,* TOURN.

SEX. SYST.—PENTANDRIA MONOGYNIA.

ANAGALLIS.

PIMPERNEL.

SYN.—ANAGALLIS ARvensis, LINN.

COM. NAMES.—COMMON SCARLET OR RED PIMPERNEL, POOR MAN'S WEATHER-GLASS, RED CHICKWEED; (GER.) HÜHNERDARN; (FR.) MOURON.

A TINCTURE OF THE WHOLE PLANT ANAGALLIS ARvensis, LINN.

Description.—This low, spreading or prostrate annual herb, grows from 6 to 20 inches in length. Stem square, glabrous, branching; leaves opposite, entire, ovate, and sessile, dotted upon the under surface. Inflorescence axillary; flowers ranging on different plants from scarlet to white through the shades of blue and purple; peduncles filiform, longer than the leaves, 1-flowered, bractless. Calyx 5-parted; lobes lanceolate-subulate; margins rough. Corolla rotate, 5-parted, longer than the calyx; tube little or none; lobes broad, obovate, obtuse, fringed with stipitate glands. Stamens 5, inserted upon the base of the corolla; filaments purple, bearded; anthers broadly oblong. Ovary free from the calyx; ovules amphitropous. Fruit a globular, membranaceous, circumcissile capsule or pyxis; seeds many, somewhat triangular; testa rough with minute verrucae.

Primulaceæ.—This small family of herbs is represented in North America by 12 genera, comprising 38 species and 15 varieties; it is characterized as follows: Leaves simple, alternate, opposite, or whorled. Flowers regular, symmetrical, and perfect; perianth hypogynous. Calyx persistent. Corolla rotate, hypocrateriform, or campanulate. Stamens of the same number as the lobes of the corolla and opposite them; filaments inserted upon the tube of the corolla; anthers introrse. Ovary 1-celled, free from the calyx; style columnar, undivided; stigma undivided; ovules sessile on a free central placenta. Seeds numerous; albumen copious, fleshy; embryo straight, small.

The only other plant of this order in our Materia Medica is the European Sow-Bread (Cyclamen Europæum, Linn.). In general and household practice the flowers of the European Cowslip (Primula officinalis, Jacq.) have been used as a sedative, and placed in wine to render it soporific.

* ἀγαλλω, anagelao, to laugh; from its supposed quality of causing hilariousness.
History and Habitat.—The Pimpernel is naturalized in this country from Europe, and has established itself along both the Atlantic and Pacific coasts in dry, sandy soil, where it blossoms from June to August.

Anagallis formerly held a place in the pharmacopoeias of Great Britain as a detergent, vulnerary, and cephalic; and was much prized by the ancients in gout, gravel, convulsions, and the plague. Gelin and many others considered it highly anti-hydrophobic, and reported many cures of this dire malady by its use, even after dangerous symptoms supervened. The plant also enjoyed much reputation at one time as an anti-epileptic, sudorific, and diuretic in dropsy; it has, however, entirely passed out of the minds of general practitioners. Pliny and Dioscorides thought highly of the Pimpernel in the removal of intestinal and hepatic obstructions; and it was, most probably, from the happier condition of the mind following such action, that the latter called the plant ἀνάγκηλδω.

PART USED AND PREPARATION.—The whole fresh, flowering plant (the scarlet-flowered form) is chopped and pounded to a pulp, enclosed in a piece of new linen, and subjected to pressure. The expressed juice is then briskly agitated with an equal weight of alcohol, and allowed to stand eight days in a dark, cool place. The tincture, prepared by filtering the above mass, has a slight olivaceous color by transmitted light; a sweetish somewhat nauseous herbaceous odor; a nutty and slightly astringent taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—**Cyclamin**, \(C_{20}H_{24}O_{13}\). This glucoside forms in small white crystals, or in an amorphous, lustreless, friable mass; it is very acrid, has a rancid taste, and a neutral reaction. Cyclamin is not volatile, is soluble in water and alcohol, but not in ether. Its aqueous solution is quite saponaceous. This glucoside breaks down under the action of mineral acids as follows:

\[
\text{Cyclamin} + \text{Glucose} = \text{Cyclamiretin} + \text{Water}.
\]

\[
C_{20}H_{24}O_{13} + C_6H_{12}O_6 + C_{14}H_{10}O_6 + H_2O.
\]

PHYSIOLOGICAL ACTION.—The whole plant is acrid and poisonous, as the following experiment of Orfila shows:

"At eight o'clock in the morning, three drachms of the extract of pimpernel, dissolved in an ounce and a half of water, were introduced into the stomach of a robust dog. At half-past twelve he had a motion. At six in the evening he was dejected. At eleven sensibility appeared diminished. The next morning at six he was lying upon the side, and appeared to be dead; he might be displaced like an inert mass of matter. He expired half an hour later. The mucous membrane of the stomach was slightly inflamed; the interior of the rectum was of a bright color; the ventricles of the heart were distended with black coagulated blood; the lungs presented several livid spots, and their texture was preternaturally dense. Two drachms of the same extract, applied to the cellular texture of a dog's thigh, produced death in twelve hours; and the heart and lungs presented the same appearances as in the other." The following symptoms, recorded by Schreter, show the character of its action upon man: Lively mood with extra mental vigor;
stitching headache with sticking pains in the eyeballs; dryness of the throat; tickling, prickling along the urethra, causing desire for coition; prickling in the chest; general drawing rheumatic pains; sleeplessness; trembling and shivering; and trembling of the heart.

Description of Plate 108.

2. Fruit.
3. Same, showing dehiscence.
4. Seed.

(2-4 enlarged.)
N. ORD.—BIGNONIACEÆ.
GENUS.—CATALPA;* SCOP. WALT.
SEX. SYST.—DIANDRIA MONOGYNIA.

CATALPA.

INDIAN BEAN.

SYN.—CATALPA BIGNONIOIDES, WALT.; BIGNONIA CATALPA, LINN.; CATALPA SYRINGÆFOLIA, SIMS.; CATALPA CORDIFOLIA, DUHAM.
COM. NAMES.—CATALPA, INDIAN BEAN, BEANTREE.

A TINCTURE OF EQUAL PARTS OF THE FRESH INNER BARK AND LEAVES OF CATALPA BIGNONIOIDES, WALT.

Description.—This magnificent umbrageous tree, beautiful in blossom, picturesque in fruit, attains a height of from 20 to 40 feet, its short trunk and spreading branches making it one of our finest shade trees, noted for the persistence of its fruit, the pods often hanging until new ones are formed. The stem is deliquescent, and has a fine gray corrugated bark, more or less glossy and warty; the wood commercially has but little value, though it is light, fine-textured, and capable of taking a fine polish. The branches are large and very irregular in their mode of growth. Leaves large, opposite or in whorls of three, long-petioled, simple, entire, heart-shaped and pointed; they are smooth above and downy beneath, especially upon the midrib. Inflorescence open, compound, showy panicles, of large, striking flowers, upon the ends of the branches. Calyx deeply 2-lipped or 2-parted, the segments being ovate, scaphoid, and blunt-pointed. Corolla monopetalous, campanulate, inflated, deciduous; the repand five-lobed, divergent border, irregular and 2-lipped. Stamens sometimes didynamous with a rudimentary fifth, but more frequently with only one fertile pair; filaments incurved, as long as the tube of the corolla and inserted upon it; anthers with two diverging cells; pollen-grains compounded of many globular bodies all united in the form of a globe. Pistil compound; ovary 2-celled, free, upon a fleshy discoid base; style single; stigma capitate, or consisting of two lips or plates. Fruit a woody, subcylindrical, slender pod, from 4 to 12 inches long, pendulous and persistent, 2-celled, the septum contrary to the valves; seeds numerous, densely packed and superimposed, flattened by compression, membraneous, with fringe-tipped alæ; embryo flat, albumen none.

History and Habitat.—Catalpa, like all the other genera of this order of plants, is tropical; its most northern range is Kentucky, where it grows in many places spontaneously, flowering in July, and fruiting in October. It is cultivated in many places in the Middle and Eastern States, attaining a full growth and ap-

* The Indian name.
parently as healthy and perfect as in its own climate. Its uses as a drug have been but slight, its provings as yet show nothing of great importance, a mild cathartic action being the only result of large doses of a decoction of the inner bark. It has been used as an anthelmintic. Catalpa has no place in the U. S. Ph., nor Eclectic Materia Medica.

PART USED AND PREPARATION.—The fresh inner bark and leaves are chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, and pouring it into a well-stoppered bottle, it is allowed to stand eight days in a dark, cool place. The tincture is then separated by decanting, straining and filtering. Thus prepared, it has a clear orange-brown color by transmitted light, a bitter astringent taste and an acid reaction.

CHEMICAL CONSTITUENTS.—The bark of this plant contains an amorphous bitter principle, the chemistry of which has not been determined; it has a nauseous taste, and is soluble in alcohol. Beside this, sugar and tannin are present in small amount. The plant seems to impart all its properties to hot water and to alcohol.

PHYSIOLOGICAL ACTION.—Unknown. It has been said that it is dangerous to long inhale the odor of the tree, which however is false, at least in this locality the emanations cause no symptoms whatever.

DESCRIPTION OF PLATE 109.
1. Panicle from a specimen in DeWitt Park, Ithaca, N. Y., June 12, 1880.
3. Pistil (enlarged).
4. Stamens (enlarged).
5. Medium-size fruit.
7. Pollen x 380.
VERBÁSCUM THÁPSUS, Linn.
VERBASCUM.

MULLEIN.

SYN.—VERBASCUM THAPSUS, LINN.; TAPSUS BARBATUS, GER.

COM. NAMES.—COMMON MULLEIN; HIGH TAPER; COW’S LUNG WORT; FLANNEL PLANT; (FR.) MOLÈNE, BOUILLON-BLANC; (GER.) KÖNIGS-KERZE, WOLLKRAUT.

A TINCTURE OF THE WHOLE FRESH HERB, VERBASCUM THAPSUS, LINN.

Description.—This densely woolly, pale green biennial weed, grows to a height of from 3 to 6 feet or more. *Stem* stout, simple, and very straight; *leaves* alternate, crowded, oblong, acute, entire or nearly so, and so far decurrent at the base that the stem appears winged. *Inflorescence* a simple, dense, terminal, cylindrical spike, from 1 to 2 feet in length. *Flowers* ephemeral, closing during sunshine. *Calyx* 5-parted; *lobes* lanceolate, acute. *Corolla* open or concave, somewhat rotate, the tube scarcely apparent; *lobes* 5, broad, acute, nearly equal. *Stamens* 5; *filaments* curved, the lower two longest and naked, the lateral pair longer than the upper one, and the latter three bearded; *anthers* 5, 1-celled by confluence. *Style* cylindrical, curved; *stigma* capitate, or merely a stigmatose dilation of the apex of the style. *Pod* globular, septicidally 2-valved; *valves* 2-cleft; *seeds* numerous, wrinkled.

Scrophulariaceae.—This large family of herbs, or rarely small shrubs and trees, is noted for its many narcotic-poisonous species. In its general character it bears some resemblance to the Labiateæ, but is separated from that order by many intervening families. It is characterized as follows: *Leaves* either opposite or alternate, sometimes whorled; *stipules* none. *Inflorescence* various; *primary* centripetal; *secondary* centrifugal when present; *flowers* perfect, more or less irregular and bilabiate; *calyx* and *corolla* 5-merous, the former persistent, the latter personate; sometimes, however, they are 4-merous, but all four stamens are not always present, and in one genus (*Synthyris*) the corolla is entirely wanting. *Stamens* didynamous or diandrous, rarely 5 and perfect (*Verbascum*), when any are abortive it is usually the superior one; *filaments* inserted upon the tube of the corolla. *Ovary* 2-celled; *placentae* axial; *ovules* several to numerous, rarely one,

* Altered from Barbacum, the old Latin name, signifying the bearded pubescence.
anatropous or amphitropous; style single and undivided; stigma usually entire, sometimes 2-lobed or 2-lipped. Fruit generally capsular, 2-celled. Seeds small, rarely winged; embryo usually small and straight; albumen copious, sarcous.

Beside the six genera represented in this work, we have provings of two important members of this Order, viz.: the European Fox-glove (Digitalis purpurea, Linn.), remarkable for its accumulative power in the system, and its action upon the heart; and the European Hedge Hyssop (Gratiola officinalis, Linn.), whose active principle so nearly resembles that of Veratrum.

The following species are more or less noted in medical literature as secondary plants: the tropical Indian anti-rheumatic Herpestes Monniera, H.B.K.; the Peruvian tonic and febrifuge Tunpu (Calceolaria trifida, Vahl.), and emetic and purgative C. pinnata, Linn.; the Guayanian Bitter Blain (Vandellia diffusa, Linn.), highly valued by the natives as an emetic and purgative in malignant fever and dysentery; and the Malabar specific for gonorrhcea, Torenia Asiatica, Linn. Several other species of Digitalis are said to possess the full action of D. purpurea, among which the following are prominent: The Swiss Digitalis ambigua, Murr.; the Levantine D. orientalis, Lam.; the German D. purpurascens, Roth.; and the Italian D. ferruginea, Linn. The European Water-Betony (Scrophularia aquatica, Linn.) is noted in France as the herbe du siège, from its having been the sole support at one time of the garrison of Rochelle during the celebrated siege by Cardinal Richelieu in 1628.

History and Habitat.—The common Mullein is a native of the Isle of Thapsos, now found in most parts of Europe. In North America it has become thoroughly naturalized, principally though, in the Eastern United States, where it frequents waste grounds and dry fields. It flowers throughout the summer months, its fruit being fully ripe in October.

Verbascum has been known as a medical plant from ancient times. The Φιλόμος of Hippocrates and other ancient writers is supposed to be this species, though Sibthorp states that it is the male Λευκός Φιλόμος; Sprengel judges that the female is the mullein and the male the V. undulatum.*

The principal use of this herb in medicine has been as an anodyne-pectorai, and remedy for catarrhal coughs and diarrhoeas. Dr. Home† concludes upon trial that it “is useful in diminishing or stopping diarrhoea of an old standing, and often in easing the pains of the intestines.” Rafinesque‡ sums it up its uses as follows: “Leaves soft, like velvet; equal to flannel in rheumatism for frictions; formerly thought to cure agues; emollient in poultice; good discutient to reduce swelled and contracted sinews. Tea sub-astringent, bitterish, used for diarrhoea; strong decoction in wash for piles, scalds, and wounds of cattle. Blossoms better than leaves, anodyne, antispasmodic, repellant, pectoral, make a perfumed tea useful for coughs, hemoptysis, hemorrhage and proctalgia.” The flowers placed in a bottle and set in the sunshine are said to yield a fatty matter valuable as a cure for hemorrhoids. The plant is just now being introduced as a valuable

remedy in pulmonary phthisis, articles appearing from time to time in various medical and scientific periodicals upon this point. Dr. F. J. B. Quinlan regards the plant as having a distinct weight-increasing power in early cases of pulmonary consumption. The hot decoction, he claims, causes a comfortable sensation, which, patients who have taken it, experience a decided physiological need of. "It eases phthisical cough, some patients scarcely requiring cough medicines at all" who use this remedy. "Its power of checking phthisical looseness is very marked, and it also gives great relief to the dyspnœa. It is, however, useless in advanced cases, and has no effect in checking night sweats."* The leaves are considered to be diuretic, demulcent, anti-spasmodic, and anodyne; and the seeds are said to pass readily and rapidly through the intestinal canal, thus proving useful for the removal of obstructions.

Verbascum plays no part in the U. S. Ph.; in the Eclectic Materia Medica its preparation is *Cataplasma Verbasci*.

PART USED AND PREPARATION.—The fresh plant, gathered in July, when coming into blossom, should be chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, pour it into a closely-stoppered bottle, and allow it to stand eight days in a dark, cool place. The tincture separated by filtration should be opaque, in thin layers it has a deep reddish-brown color by transmitted light. It should have a sweetish, herbaceous odor, a smoothish astringent taste, and decided acid reaction.

CHEMICAL CONSTITUENTS.—An analysis of the flowers by Morin yielded a yellow volatile oil, a fatty acid, free malic and phosphoric acids and their -ate salts of lime, a yellow resinous coloring matter, and the general plant constituents, including an uncrystallizable sugar. The leaves contain mucilage.

PHYSIOLOGICAL ACTION.—Many of the symptoms caused by from 30 to 40 ounces of a tincture of the fresh leaves daily, are characteristic of the action of this drug. In Hahnemann's experiments the following prominent effects are noted; Vertigo on pressing the left cheek with the hand; dull pressure at the left infra-maxillary condyle, with painful tearing and drawing in the ear; sensation as if the temporal eminences were crushed with pincers; † numbness in the left ear, with a sensation as if the ear would be drawn inward; severe drawing, pressure, and numbness of the left malar bone, temple and zygoma; root of tongue coated brown; urging to urinate, with decreased secretion; constrictive and pressive pains in the bones and muscles, and weakness of the lower limbs. The action of

† I judge from my own experiments with plants, that the pains similar to crushing of bones with excruciating tearing sensation, is due to the Malic acid contained in them. I have never noted the symptom as arising from experiments with drugs not containing this body. The minor symptoms of disinclination to work, sleepiness after dinner, general shiftlessness, etc., of Verbascum arose also in my experimentention with the *Sheep sorrel* (*Oxalis stricta*, Linn.), which contains Malic among other vegetable acids.
Verbascum seems to be a somewhat peculiar irritation of the temporo-facial branch of the seventh pair of cranial nerves and a somewhat narcotic action upon the brain.

Hahnemann observes that the narcotic effects of the drug wore off in about two hours in his experiments. The seeds of Verbascum Lychnitis and Thapsus have often been employed to stupefy fish.

Description of Plate 110.

1. Upper portion of a young plant, Pamrapo, N. J., June 29th, 1879.
2. Flower.
3. Pistil.
5. Bearded stamen.
6. Pollen, x 250.
7. A portion of the root.

(3-5 enlarged.)
Linaria.

Toad Flax.

SYN.—Linaria Vulgaris, Mill.; Antirrhinum Linaria, Linn.

Com. Names.—Toad Flax, False Flax, Yellow Flax, Ransted, Jacob’s Ladder, Continental Weed, Butter and Eggs; (Ger.) Frauenflachs, Leinkräut, Löwenmaul; (Fr.) Linaire commune.

A Tincture of the Fresh Plant Linaria Vulgaris, Mill.

Description.—This too-common roadside weed grows to a height of from 1 to 3 feet, from a perennial root. Root woody, creeping, white and fibrous. Stem erect and simple. Leaves pale green, glaucous, arranged alternately, or more or less scattered or whorled upon the stem; sesile, linear-lanceolate, with an acute tip, and vary from 1 to 3 inches in length. Inflorescence, a terminal, densely-flowered, spiked raceme; flowers 1 inch long, bright yellow, with a chromecolored palate. Calyx five-parted, shorter than the spur of the corolla. Corolla tubular, masked with a projecting, bifid palate, that nearly closes the ringent throat. Upper lip two-cleft. Lower lip trifold, the middle lobe smallest. Spur awl-shaped, situated upon the lower side of the base. Stamens four, didynamous. Anthers two-celled. Pollen grains oval, with a deep sulcus and induplicate edges. Fruit a thin, two-celled ovoid capsule, opening by two slits below the apex. Seeds numerous, flattened, with a nearly complete winged margin. For description of the natural order Scrophulariaceae, see Verbascum Thapsus, 110.

History and Habitat.—This pernicious, widely-spreading weed, doubtless has its origin in Europe. It is now but too thoroughly naturalized here; its injuriousness, however, being somewhat mitigated by its choice of ground, growing as it does only in waste places, dry sandy fields, and along the embankment of railroads and roadways. It blossoms through the summer months, fruiting as it flowers. Linnaeus states (Flor. Suec.) that a decoction of this plant in milk was used as a fly poison. Its previous medical uses were internally for jaundice and anasarca, and externally for hemorrhoids, but it has dropped out of use entirely, except with us.

Part Used and Preparation.—The whole fresh plant, gathered when in full flower, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it and the rest of the alcohol added. The whole is then poured into a well-stop-
pered bottle and allowed to stand for eight days in a dark, cool place. The tincture is then separated by straining and filtering. Thus prepared, it has a very deep brownish-red color by transmitted light, a taste at first cooling and sour, then like weak tea, and a very acid reaction.

CHEMICAL CONSTITUENTS.—I am unable to find any chemical data regarding this plant, with the exception of the flowers; they have been analyzed, but show nothing of the active principle, which probably lies in its acid.

PHYSIOLOGICAL ACTION.—The true action, physiologically, of this plant is not known. The provings have been carefully made, and show symptoms of some importance, but are not sufficient to determine its sphere.

Description of Plate 111.

1. Upper part of a plant from W. Brighton, S. I., July 5th, 1879.
2–4. Flowers.
3. Section of flower.
5. Root.
6. Pollen x 380.
7. Seed (enlarged).
Scrophularia nodosa, Linn.
SCROPHULARIA.

FIG-WORT.

Description.—This rank perennial herb grows to a height of from 2 to 4 feet. Stem clearly quadrilateral, with slight obtuse ridges at the angles, glabrous throughout. Leaves opposite, ranging from oval below to lanceolate above, doubly serrate, and cordate or nearly so at the base. Inflorescence a primarily nodding terminal panicle, of loose, 3 to 6-flowered cymes; flowers small, lurid, brownish- or greenish-purple. Calyx deeply 5-cleft into ovate, equal lobes. Corolla globose, contracted at the throat, and furnished with a two-lipped border; petals 5, the upper lip of two erect, equal lobes, the lower lip composed of a lateral equal pair, shorter however than those of the upper, and a lower reflexed, spreading lobe, closely appressed to the tube. Stamens 4, curled inward with the anthers closely surrounding the ovary; they become erect when ripening, and finally decline. The rudiment of a fifth stamen forms a protuberance at the summit and in the throat of the corolla-tube. Filaments pubescent, broader above than below; anthers with two confluent cells, opening transversely at the apex. Fruit a 2-celled, ovoid, septicidal, many-seeded pod; seeds black, rough, and dotted with minute pits. Read description of the N. Order under Verbascum, 110.

History and Habitat.—The Fig-wort grows along the borders of woods and dry roadsides, from Utah eastward throughout the United States and Canada, flowering from June to September. The European Scrophularia nodosa and our var. Marilandica seem to differ but slightly in their parts and properties from the species under consideration. This herb is said to serve as a soothing poultice to inflamed tumors, suppurating mammae, ulcers, burns, hemorrhoids, etc.; it is also used alone and as a component of salves, for itch, various eruptions, and "scabs"
in swine, as well as a tonic and deobstruent in hepatic and glandular disorders. All parts of the plant have a heavy, rank odor when bruised, resembling that of the elder (Sambucus).

Scrophularia is not mentioned in the U. S. Ph.; in the Eclectic Materia Medica it is official as Decoctum Scrophulariae, and as a component of Syrupus Rumexis Compositus, and Tinctura Corydalis Composita.

PART USED AND PREPARATION.—The whole fresh plant, gathered just before flowering, should be chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol should be taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole, pour it into a well-stoppered bottle and let it stand eight days in a dark, cool place. The tincture, separated by straining and filtering, should have a beautiful deep crimson color by transmitted sunlight, a rank, acid odor and taste, and strong acid reaction.

CHEMICAL CONSTITUENTS.—Scrophularin; this principle, the chemistry of which has not yet been determined, was extracted from a decoction of the fresh plant by Walz.* It crystallizes in bitter scales, soluble in both alcohol and water.

Scrophularosmin; this stearoptene was also discovered by Walz in an aqueous distillate of the plant.

Walz's analysis also yielded acetic acid, $C_2H_4O_2$; propionic acid, $C_3H_6O_2$; pectin, $C_{32}H_{48}O_{32}$; and a red coloring matter.

PHYSIOLOGICAL ACTION.—According to Dr. Blakely,† this drug, in repeated doses of from 20 drops to a teaspoonful of the tincture, causes: Fullness of the head, and vertigo; free bleeding of the gums; salivation; increased appetite; colic; general weariness; sleepiness; and sallow skin.

In this experimenter the drug seemed to expend its force upon the liver.

DESCRIPTION OF PLATE 112.

1. Panicle.
2. Second pair of leaves from panicle.
3. Flower, under side.
4. Corolla opened to show sexual organs.
5. Ripe stamen (enlarged).
6. Pollen, x 250.

Binghamton, N. Y., June 8th, 1884.

Chelone Glabra, Linn.
N. ORD.—SCROPHULARIACEÆ.

Tribe.—CHELONEÆ.

GENUS.—CHELONE, Linn.

SEX. SYST.—DIDYNAMIA ANGIOSPERMIA.

CHELONE GLABRA.

TURTLE-HEAD.

SYN.—CHELONE GLABRA, LINN.; CHELONE OBLIQUA, LINN.

COM. NAMES.—TURTLE-HEAD, SNAKE-HEAD, SHELL-FLOWER, BAL-MONY, SALT-RHEUM WEED; (FR.) CHELONE; (GER.) GLATTE, CHELONE.

A TINCTURE OF THE FRESH PLANT CHELONE GLABRA, LINN.

Description.—This beautiful swamp herb grows to a height of from 2 to 6 feet, from a creeping perennial root. The stem is smooth, upright, somewhat obtusely four angled, and branching laterally, particularly near the top. It is a question though, whether it is really a branching herb, or whether the so-called branches are merely elongated peduncles of the lateral axillary flower spikes. The leaves are opposite, either sessile or very short petiolate, broadly lanceolate, serrate and pointed, ranging from 2 to 4 inches in length and of various breadths. The inflorescence consists of a dense, bracted spike, terminal upon the stem and its branches?; the flowers are sessile, closely imbricated with concave, rounded-ovate, sharp-pointed bracts and bractlets. Calyx of five deeply parted or distinct imbricated sepals. Corolla tubular, with either equal or unequal lateral inflations, the mouth either a little open or widely gaping; upper lip broad-arching, keeled in the middle, and either entire or notched at the apex; lower lip 3-lobed at the apex, the middle lobe narrow or sometimes smallest. Stamens consisting of four didynamous, included, fertile or complete ones and one sterile or rudimentary; filaments flat, woolly, the rudimentary fifth much smaller than the other four; anthers heart-shaped, acuminate, completely connected in pairs by the adhesive cottony wool; pollen more or less cylindrically "hat-shaped," the sulcus being between the crown and the rim. Pistil as a whole, projecting beyond the stamens; ovary 2-celled, ovoid; style long, slender and cylindrical; stigma small and blunt. Fruit a 2-grooved, 2-celled ovoid capsule, opening by dehiscence through the partition, each half carrying a section with it bearing the placenta. Seeds numerous, winged and margined. A description of the natural order may be found under Verbuscum thapsus, 110.

* χελώνη, tortoise, from the resemblance of the corolla to the head of that reptile.
History and Habitat.—This strikingly erect plant, native of Canada and the United States, grows—though not in great abundance in any one locality—about the margins of swampy places and along the wet edges of open woods, flowering from August to September. The flowers are large and without odor, they vary from white to cream, rose or purplish; varieties have been at different times named both on account of the color of the flowers and the mode of growth, but they are too indistinctly separate to afford a place and name. *C. alba; C. rosea; C. purpurea; C. lanceolata;* and *C. obliqua.*

Balmony has for years been a favorite tonic, laxative and purgative, among the aborigines of North America and Thomsonian physicians; without sufficient reason however as a tonic, in the doses usually employed.

Chelone has no place in the U. S. Ph. In the Eclectic Materia Medica it is officinal as *Decoction Chelonis.*

PART USED, AND PREPARATION.—The fresh herb as a whole, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it, and the rest of the alcohol added. After thorough stirring, and pouring the whole into a well-stoppered bottle, it is allowed to stand eight days in a dark, cool place. The tincture is then separated by straining and filtering. Thus prepared, it has a clear orange-brown color by transmitted light, a bitter taste and highly acid reaction.

CHEMICAL CONSTITUENTS.—No analysis has been made of this plant; all parts of it are very bitter, and as it yields this property to alcohol and water, we may consider at least, that the active body is soluble in these liquids.

Description of Plate 113.

1. Whole plant five times reduced, from Binghamton, N. Y., August 15th, 1882.
2. Apex of stem in flower.
3. Pistil (enlarged).
4. Fertile stamen (enlarged).
5. Rudimentary stamen (enlarged).
6. Pollen x 380.
VERÓNICA VIRGÍNICA, Linn
N. ORD.—SCROPHULARIACEÆ.
Tribe.—SIBTHORPIÆ, VERONICÆ, etc.
GENUS.—VERONICA,* LINN.
SEX. SYST.—DIANDRIA MONOGYNIA.

LEPTANDRA.

CULVER’S PHYSIC.

SYN.—VERONICA VIRGINICA, LINN.; V. PURPUREA, STEUD.; V. SIBIRICA, LINN.; V. JAPONICA, STEUD.; LEPTANDRA VIRGINICA, NUTT.; PÆDEROTA VIRGINICA, TORR.; CALLISTACHYA VIRGINICA, AND EUSTACHYA ALBA, RAF.

COM. NAMES.—CULVER’S ROOT OR PHYSIC, BLACK ROOT, TALL SPEEDWELL, HIGH VERONICA. WHORLY WORT, QUINTEL, HINI; (FR.) VERONIQUE DE VIRGINIE; (GER.) VIRGINISCHER EHRENPREIS.

A TINCTURE OF THE FRESH ROOT OF VERONICA VIRGINICA, LINN.

Description.—This graceful perennial herb grows to a height of from 1 to 7 feet. Root horizontal, blackish, sometimes branched, scarred upon its upper surface by the previous growths, and giving off from the nether numerous long and fibrous rootlets. Stem simple, strict, and glabrous. Leaves whorled in numerous clusters of from 3 to 9; short petioled, lanceolate, acute, tapering at both ends, finely serrate, and often downy beneath especially upon the veins. Inflorescence in from 1 to 9 terminal, panicked, spike-like, densely-flowered racemes; flowers small, nearly sessile; bracts very small, subulate. Calyx 4-parted, persistent; sepals lanceolate, acute. Corolla salver-form, pubescent within, the tube much longer than the 4-parted limb, and greatly exceeding the calyx; lobes erect, acute, the upper broadest, the lower narrowest. Stamens 2, far exserted; filaments hairy, inserted low down upon each side of the upper lobe of the corolla and about twice its length; anthers rather large, 2-celled; cells confluent at the apex. Ovary superior, 2-celled; style columnar, entire, exserted, persistent; stigma solitary, capitate. Fruit an oblong-ovate, 2-celled pod, not notched at the apex nor much flattened; dehiscence by 4 apical teeth, at length becoming somewhat loculicidal; seeds numerous, black, oval, and terete; testa minutely reticulated.

History and Habitat.—This most graceful and attractive of all American Veronicas, habits moist wooded banks from Canada and the valley of Winnipeg, to Georgia, Alabama, and Missouri. It blossoms contemporaneously with Cimicifuga early in July, and, when viewed at a distance, the two plants appear to be the same, while either has a beauty and grace which would render it poetically suitable for a fairy’s wand. The species also grows in Japan and Eastern India, and varies

* Dedicated to St. Veronica; or, perhaps, a play upon Betonica.
somewhat in color of anther and perianth in different localities. Culver's Physic was introduced into English gardens in 1714, and has been somewhat planted in this country.

This is one of the many American Aboriginal remedies handed down by them to the botanics, and extensively, therefore, used in domestic practice from our earliest settlements. In a fresh state the root gained a great reputation as a drastic purge and abortivant, but its action was too uncertain and severe; in this state it was also frequently employed in intermittents, and was thought to be a prophylactic against future attacks. The use of the fresh drug has, however, almost ceased in general practice, giving place to the dried root, and an extractive called Leptandrin. Doses of from 20 to 60 grains of the powdered root have been used as a stomachic tonic, laxative, and antiperiodic; in dyspepsia, torpidity of the liver, debilitated conditions of the alimentary tract, typhoid and intermittent fever, and some forms of dysentery and diarrhoea. Speaking of the drug in the light of sixty years ago, Rafinesque says:* "The root alone is medical; it is bitter and nauseous, and is commonly used in warm decoction as purgative and emetic, acting somewhat like the Eupatorium and Verbena hastata; some boil it in milk for a milder cathartic, or as a sudorific in pleurisy. A strong decoction of the fresh root is a violent and disagreeable, but effectual and popular remedy in the Western States, for the summer bilious fevers."

The official preparations of the U. S. Phar. are: Extractum Leptandrae and Extractum Leptandrae Fluidum. In the Eclectic Materia Medica the same preparations are recommended, and the following also advised: Extractum Leptandrae Hydroalcoholicum and Tinctura Leptandrae.

PART USED AND PREPARATION.—The fresh root of the second year, gathered after fruition, should be chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are to be taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, transfer it to a well-stoppered bottle, and allow it to macerate eight days in a dark, cool place, shaking twice a day.

The tincture, prepared from this mass by pressing and filtering, has a deep reddish-orange color by transmitted light; a somewhat earthy odor; no characteristic taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—Leptandrine:† This bitter principle, separated by Wayne,‡ retains the characteristic odor of the root. It is crystallizable when free from coloring-matter, and is soluble in water, alcohol, and ether.

Tannin, gum, resin, volatile oil, and mannite,§ a volatile alkaloid, citric acid, and a saponin-like body having a glucosidal nature,|| have also been determined.

* Med. Flora, 2, 22.
† This name is proposed, that the substance may not be confounded with "Leptandrin," the extract of the tincture now on the market.
PHYSIOLOGICAL ACTION.—Full doses of the recent root of Leptandra cause dimness of vision, vertigo, vomiting, and purging of bloody or black, tarry, papesscent feces. Dr. Burt's experiments with from 1 to 40 grains "Leptandrin" and 20 to 160 drops of the fluid extract gave the following symptoms: Headache, smarting of the eyes and lachrymation; yellow-coated tongue; nausea, burning and distress in the stomach; severe abdominal pains with great desire for stool; profuse black, fetid discharges from the bowels; general lassitude; hot, dry skin; and sleepiness,

Leptandra proves itself to be a severe irritant to the gastric and intestinal mucous surfaces, and a stimulant to the absorbent system.

DESCRIPTION OF PLATE 114.

1. Whole plant, 6 times reduced, Binghamton, N. Y., July 27th, 1885.
2. Summit of single-racemed plant.
3. Third whorl of leaves from top of No. 1.
4. Limb of corolla.
5. Flower.
6. Calyx and pistil.
7. Stamen.
8. Anther.
10. Fruit.
11. Horizontal section of ovary.
12. Seed.

(4-12 enlarged.)
EUPHRASIA OFFICINALIS, Linn.
EUPHRASIA.

EYEBRIGHT.

SYN.—EUPHRASIA OFFICINALIS, LINN.; E. CANDIDA, SCHEN.; EUPHRAGIA ALBA, BRUN.

COM. NAMES.—EYEBRIGHT, EUPHRASY; (FR.) EUPHRAISE; (GER.) AUGENTROST.

A TINCTURE OF THE HERB EUPHRASIA OFFICINALIS, LINN.

Description.—This low annual only grows to a height of a few inches. Stem erect, hairy; branches opposite. Leaves opposite, varying from roundish-ovate to oblong; margin incisely dentate, that of the upper or floral leaves with strongly setaceous teeth; in the lower leaves tending more to crenate. Inflorescence spicate; bracteoles none; flowers small, whitish. Calyx tubular-campanulate, 4-cleft; lobes acute, pointed. Corolla purple-striped, dilated at the throat, bilabiate, the lips subequal; upper lip erect, barely concave, 2-lobed, the sides revolute; lobes emarginate; lower lip external in the bud, spreading, 3-lobed; lobes emarginate, the middle one largest and yellow. Stamens 4, didynamous, rising under the upper lip of the corolla; anthers 2-celled; cells equal, distinct, each mucronate at its base. Style filiform; stigma entire. Fruit an oblong, flattened, loculicidal capsule; seeds numerous, pendulous, oblong, and longitudinally sulcate.

History and Habitat.—Euphrasia is indigenous to Europe and North America. With us its growth is depauperate and its stations few. It ranges, here, from the north-eastern coast of Maine over the alpine summits of the White Mountains and Adirondacks; thence northward and westward along the upper shore of Lake Superior to the Aleutian Islands. In many of these locations a dwarf form, with very small flowers, is found. It flowers in July and August.

Though this herb has always been known under a name of Greek origin still no mention of the plant is made by Dioscorides, Pliny, Galen, or even by the Arabian physicians. F. Bauhin says that it was known as a remedy for the eyes about the year 1380.† Arnoldus Villanovanus, who died in 1313, was the author of "Vini Euphrasiati tantopere celebrati." How long before him Euphrasia was in repute for eye diseases, is impossible to say; but in Gordon's "Liticiun Medicinae," published in 1305, among the medicines for the eyes Euphragia is one, and is recommended both outwardly in a compound, distilled water, and inwardly as a

* Euphrasia, euphrasia, cheerfulness; as to its effect upon the spirits through its benefit to the sight.
† Phytop., 442
Euphragia is not mentioned in the *Schola Salernitana*, compiled about 1100. The earliest notice of Euphrasia, as a medicine, is in the works of Tragus.† It was employed as a remedy in diseases of the eyes, by Fuschius, Dodonæus, Haller, and others, and has been a vulgar remedy in these diseases from time immemorial, throughout the whole of Europe. Fuschius recommended it in suffusions and cataracts. • The Highlanders, of Scotland, make an infusion of it in milk, and anoint the patient’s eyes with a feather dipped in it. Hoffman employed it in jaundice; Villanova and Velebt, in weakness of the eyes. In 1836, Kramefeld;‡ employed it, with success, in rheumatic and catarrhal inflammation of the eyes and their lids; in cough, hoarseness, earache, and headache, which have succeeded catarrhal affections; and glandulous, catarrhal, and scrofulous blepharophthalmia.§

Woodville says:|| “Euphrasia derives its name from its reputed efficacy in various disorders of the eyes, for which it was used both externally and internally, and has long been so much celebrated as to be considered almost in the character of a specific, the ‘*verum oculorum solamen*.‘ But as there cannot possibly be a general remedy for all diseases of the eyes, the absurd and indiscriminate recommendation of Euphrasia as such, must receive but little credit from those who practice medicine on rational principles. It must be acknowledged, however, that some authors have stated peculiar complaints of the eyes, in which the use of this plant was thought more remarkably evident; and, judging by these, we should say that eyes, weakened by long-continued exertion, and those that are dim and watery, as in a senile state, are the cases in which Euphrasia promises most advantage; nor are old people to despair, for according to Hildanus and Lanzonus, several, at the age of seventy and eighty years, were recovered from almost entire blindness.” He further remarks that the Icelanders are in the constant habit of using the juice of the plant in all affections of the eyes; and adds that, “though the great reputation which Eyebright formerly supported for several ages, must have induced some practitioners to have used it; yet we do not find a single instance of its efficacy recorded in modern times. How far this remark ought to invalidate the positive testimonies in its favor, we leave others to determine.”

Dr. John King remarks¶ that four fluid ounces of the infusion morning and night, upon an empty stomach, has cured epilepsy.

PART USED AND PREPARATION. — The whole fresh flowering plant, above the root, gathered from barren, sunny spots, should be treated as directed for Verbascum, Scrophularia, and Chelone (ante, pp. 110–2, 112–2, 113–2). The resulting tincture has a deep brownish-red color by transmitted light; a pleasant, vinous odor; a bitter, astringent taste; and an acid reaction.

CHEMICAL CONSTITUENTS. — *Euphrasia-Tannic Acid*, C$_{32}$H$_{40}$O$_{17}$. — This peculiar tannin gives a dark-green precipitate with ferric salts, and is only obtainable by combination with lead. It is precipitable by glue, and tartrate of antimony (Wittstein).

* Allston, *Mat. Med.*, 7, 139. † Sprengel, *op. cit.*
The volatile oil, and acrid and bitter principle, have not as yet been chemically analyzed.

PHYSIOLOGICAL ACTION.—The symptoms caused by doses varying from 10 to 60 drops of the tincture, observed by several German experimenter,* were substantially as follows: Confusion of the mind and cephalalgia; violent pressure in the eyes with lachrymation and itching, redness and swelling of the margins of the lids, violent burning of the lids, dimness of vision, sensation as though the eye were covered with mucus; weakness, and photophobia; sneezing and fluent coryza; odontalgia; nausea; constipation; hoarseness, violent cough, with profuse expectoration, and difficult breathing; yawning and sleeplessness; profuse secretion of urine; and sweat.

Description of Plate 115.

1. Whole plant, once enlarged, Kearsarge, N. H., July 24th, 1883.
2. Calyx.
3. Flower.
4. Stamen.
5. Seed.
(2–5 enlarged.)

* See *Allen's Encyc.*, 4, 254.
Mentha Piperita, Linn.
MENTHA PIPERITA.

P E P P E R M I N T .

SYN.—MENTHA PIPERITA, SMITH, VAR. OFFICINALIS, KOCH; M. VIRIDIAQUATICA, SHULTZ; M. OFFICINALIS AND HIRCINA, HULL; M. PALUS-TRIS, RAII.

COM. NAMES.—PEPPERMINT; (FR.) MENTHE POIVREE; (GER.) PFEFFERMÜNZE.

A TINCTURE OF THE WHOLE PLANT MENTHA PIPERITA.

Description.—This glabrous or somewhat hairy, pungent, perennial herb, grows to a height of from 1 to 2 feet. Rootstock creeping, spreading, and multiplying; stem suberect. Leaves ovate-oblong to oblong-lanceolate, sharply serrate, acute, and rounded at the base; petioles distinct. Inflorescence in numerous glomerules, terminal and superaxillary, leafless, and at last interrupted, ovate spikes; flowers small, distinctly pedicellate; bracts hispid, mostly longer than the verticillasters, the upper linear. Calyx campanulate, naked in the throat; limb 5-toothed; teeth hispid. Corolla 4-lobed, hardly irregular, except that the upper lobe, though never galeate nor concave, is broader than the others and emarginate; tube short, inclined. Stamens 4, included, similar and nearly equal, erect, straight, and distant; anthers 2-celled; cells parallel, without a thickened connective. Style long, exserted.

Labiate.—This large family of square-stalked aromatic herbs, and low shrubs, represented in North America by 50 genera, comprising 231 species and 45 recognized varieties, is characterized as follows: Stems square; leaves opposite, or sometimes verticillate, simple, and usually dotted with immersed glands filled with volatile oil; stipules none. Inflorescence thyrsoidal; the general evolution of the clusters in the axils of leaves or primary bracts centripetal; that of the cymes or glomerules centrifugal; the leaves being opposite and the clusters nearly or quite sessile, a whorl-like appearance is made (verticillaster); flowers perfect; hypogynous disk usually present, or represented by 1 or 4 gland-like lobes. Calyx tubular, gamosepalous. Corolla irregular and more or less bilabiate; lobes imbricated in the bud, the posterior or upper exterior, the middle lower innermost. Stamens didynamous or diandrous, borne upon the tube of the corolla, distinct or

* Misch, Minthe, daughter of Cocyntus, whom, through jealousy, Proserpine changed into one of these plants.
rarely monadelphous; the fifth, or anterior, and in diandrous species the adjacent pair also, rudimentary or sterile; rarely the four fertile stamens are equal. *Pistil* dimerous, each carpel deeply 2-parted or lobed; *ovary* 4-parted or lobed; *lobes* uniovulate; *ovules* mostly amphitropous or anatropous and erect; *style* filiform, mostly 2-cleft and 2-stigmatose at the apex. *Fruit* 4 akene-like nutlets, surrounding the base of the stigma, in the bottom of the persistent calyx; *nutlets* smooth or barely roughish. *Embryo* straight except in *Scutellariae*; *cotyledons* plane or plano-convex; *radicle* inferior; *albumen* slight or none.

The proven plants of this order, besides the six treated of in this work, are: the Mediterranean Germander (*Teucrium Marum*, Linn.), a noted feline aphrodisiac; the European, West Asiatic, and North African Pennyroyal (*Mentha pulegium*, Linn.), which is deemed emmenagogue, and antispasmodic; the South American Alfavaca (*Ocimum canum*, D. C.), which is used, in Brazil, as a sudorific, especially in diseases of the kidneys, bladder, and urethra; the East Indian *Ocimum Basilicum*, Linn., used by the natives as a palliative for the pains of parturition; Sweet Marjoram (*Origanum Marjorana*, Linn.), a cultivated form of *O. vulgare*; the Cape *Plectranthus fruticosus*, L. Herit.; the Mediterranean Rosemary (*Rosmarinus officinalis*, Linn.), an antihysteric and emmenagogue; and the European and Siberian Betony (*Stachys Betonica*, Benth.), a sternutatory, emetic and purgative.

A large number of species of this order have figured, more or less, in general and domestic practice, as stimulant, antispasmodic, carminatives, and jucunda for unpleasant drugs. A few of them only will be mentioned here, that the order may be well understood. The European, Asiatic, and African Lavender (*Lavandula vera*, D. C.), a carminative, antihysteric, and antiflatulent. The European Spearmint (*Mentha viridis*, Linn.), which is also considered stomachic; the European, Asiatic, and African Marjoram (*Origanum vulgare*, Linn.), a mild tonic, diaphoretic, and emmenagogue; and the Mediterranean Thyme (*Thymus vulgaris*, Linn.), lauded as a local stimulant and rubefacient, in carious teeth, rheumatism, sprains, etc. The leaves of the Mediterranean Sage (*Salvia officinalis*, Linn.), are well known as a light, bitter tonic, anti-emetic, diaphoretic, and astringent. The American Horsemint (*Monarda punctata*, Linn.), is considered diaphoretic, emmenagogue, diuretic, and rubefacient. The European and West Asiatic Catmint, or Catnip (*Nepeta Cataria*, Linn.), so well known in all country households, has been used, from time without date, as a stimulant, antispasmodic, and emmenagogue, in chlorosis, amenorrhoea, and various low type female disorders. Like Marum Verum it is a feline aphrodisiac. The European Horehound (*Marubium vulgare*, Linn.), is diaphoretic, diuretic, pectoral, and emmenagogue, and much used in confections, for asthma, phthisis, tussis, night-sweats, as well as in uterine and visceral affections. The South European Hyssop (*Hyssopus officinalis*, Linn.); Balm (*Melissa officinalis*, Linn.); Summer and Winter Savories (*Satureia hortensis*, and *montana*, Linn.); and Dittany of Crete (*Origanum Dictamnus*, Linn.), are all considered antiflatulent, antihysteric, antispasmodic, emmenagogue, etc., and are used in chlorosis, amenorrhoea, hypochondriasis, and kindred affections. The
European and Asiatic Motherwort (Leonurus Cardiaca, Linn.), which has but lately been brought before us, as Homœopaths, has been esteemed much, as the above species, beside being valued in Russia, as a remedy in rabies. The East Indian Anisomeles Malabarica, R. Br.; is an excellent diaphoretic. The American Dittany (Cunila mariana, Linn.), was used, by the Aborigines, as an antiperiodic and alexiteric. The genus Ocimum furnishes plants of various properties; the Sierra Leone viride, Willd., and Indian sanctum, Linn., are febrifugal; the Japanese crispus, Thunb., antirheumatic, and the Indian suave, Willd., useful in infantile catarrh.

A number of the above species, and a multitude of others, are better known to the housewife and perfumer than to us as physicians.

History and Habitat.—Peppermint is nowhere considered truly indigenous, though probably its native haunt is the basin of the Mediterranean. It grows as an escaped plant in all European countries, as it does with us, in ditches and along brooks; there is nothing to prove that it is not a cultivated variety of M. viridis, into which it is said to revert if not properly reset. It was first said to be found in England about the year 1700, by Dr. Eales. The cultivation of the plant was begun in Great Britain about 1750, and on the Continent in 1770; it was afterward quite extensively planted in Surrey, Cambridgeshire, Lincolnshire, and Hertfordshire, in England; Sens, in France; Colleila, in Germany; and New York, Ohio, and Michigan, in the United States. The yield of oil, for which alone the plant is cultivated, is from .5 to 1.5 per cent. of the production (from 8 to 16 lbs. per acre); and the annual product of the world is estimated at about 90,000 lbs.*

Peppermint began its usefulness, in medicine, at about the same period of its cultivation, and was then considered specific in renal and vesical calculus, dyspepsia, and diarrhoea; being considered a stomachic, tonic, stimulant, antispasmodic, and carminative. It was found useful in bowel troubles, especially those associated with flatulence, colic, retching, vomiting, spasmodic actions, and hysteria. Its rubefacient action is intimately associated with what may be considered anodyne properties, when the trouble is neuralgic or rheumatoid, and the affected nerves or muscles are somewhat superficial. Facial and sciatic affections are greatly relieved by fomentations of the leaves, or rubbing the oil, or menthol, directly over the course of the nerve itself; the action is temporary, but decidedly happy.

The principal use of the essence or oil is as a flavoring for confections, and a jucund ingredient of prescriptions containing nauseous, and especially griping drugs.

The leaves and tops are officinal in the U. S. Ph., as well as Spiritus Menthae Piperite, and Vinum Aromaticum.† In Eclectic practice, the preparations are: Agua Menthae Piperita, Extractum Rheum Fluidum,‡ Infusum Menthae Piperitae, Mistura Camphorae Composita,§ Mistura Cajeputi Composita,|| Oleum Menthae Piperitae, Pulvis Rhei Compositus,¶ Tinctura Oli Mentheae Piperitae.

† Lavender, Origanum, Peppermint, Rosemary, Sage, and Wormwood.
‡ Rhubarb and Peppermint.
§ Camphor, Opium, Peppermint, and Spearmint.
|| Cajeput, Cloves, Peppermint, and Anise.
¶ Rhubarb, Bicarbonate Potash, and Peppermint.
PART USED AND PREPARATION.—The whole fresh, flowering plant is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, and pouring it into a well-stoppered bottle, it is allowed to stand eight days in a dark, cool place.

The tincture, separated from this mass by pressure and filtration, should have a clear orange-brown color by transmitted light; retain the odor of the plant; have an oily feel; a bitterish, slightly astringent, mint-like taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—Oil of Peppermint. This essential oil of the leaves is either colorless, pale yellow, or greenish, turning brown with age. It is liquid, has a sp. gr. of 0.84—0.92, boils at 188°—193° (370.4°—379.4° F.), has a strong, agreeable odor, and a powerful aromatic taste, at first biting, then cold, especially upon strong inhalation of air over the tongue; this effect is followed by a peculiar numbness characteristic of this product. The oil is soluble in water and in alcohol. It consists of a solid and liquid portion, and contains from 0.5 to 5 per cent. of a hydrocarbon (C_{10}H_{18} + or —O), which is said to prevent the crystallization of menthol.

The oil of commerce is often adulterated with that of pennyroyal, with intent, or that of Mentha arvensis, Erigeron Canadense, or Erchthites hieracifolia, by carelessness. The tests for the oil are given by the Oil and Drug News as follows: On the addition to the oil of an equal part of a mixture of two parts chloralhydrate, dissolved in one part of C. P. sulphuric acid and a drop or two of alcohol, a cherry-red coloration follows if the oil is pure; but, if pennyroyal is present, a dark olive-green color ensues; and D. Reagan says* that the pure oil is but slowly absorbed by blotting paper, but when the three plants above mentioned are mixed with it the absorption is rapid.

If the presence of the hydrocarbon above mentioned is very slight, the oil cooled to — 4 (± 24. 8° F.) will deposit.

Pipmenthol; † C_{10}H_{20}O, a stearopten of the exquisite odor of Peppermint, composed of fine hexagonal crystals, melting at 36° (96.8° F.), and boiling at 210° (410° F.).‡

[MENTHOL.—Under this name is understood the Chinese Oil of Peppermint, which is distilled from Mentha Javanica, Bl., which is so pure that it almost wholly yields this product. Chinese menthol is very like that of other countries, but differs essentially in melting at 42° (107.6° F.), and boiling at 212° (413.6° F.). The import of this substance in 1884 was 4000 lbs., since when it has greatly increased.]

Menthene, C_{10}H_{18}.—On distilling menthol with phosphorous pentoxide, this body results as a levogyrate liquid, boiling at 163° (325.4° F.). An almost odorless resin, and tannin, have also been determined.

PHYSIOLOGICAL ACTION.—The symptoms of disturbance caused in Dr. Demeures' experiments are substantially as follows: Headache, with confusion; shooting pains in the region of fifth-nerve terminals; throat dry and sensitive; dry cough on inspiration; and external muscular soreness of the neck. Dr. Demeures judges that this drug is to dry cough what arnica is to bruised and strained muscles.

DESCRIPTION OF PLATE 116.

1. End of an early flowering plant, Binghamton, N. Y., July 26th, 1885.
2. Flower.
3. Section of calyx.
4. Section of corolla.
 (2–4 enlarged.)
LYCOPUS VIRGINICUS, Linn.
LYCOPUS.

BUGLE-WEED.

SYN.—LYCOPUS VIRGINICUS, LINN.; L. UNIFLORUS, MICHX.; L. PUMILUS, VAHL.; L. MACROPHYLLUS, BENTH.; L. VIRGINICUS, VAR. PAUCIFLORUS, BENTH.; L. VIRGINICUS, VAR. MACROPHYLLUS, GRAY.

COM. NAMES.—BUGLE-WEED, WATER HORSEHOUND, GIPSY-WEED, GIPSY-WORT, PAUL'S BETONY, WATER BUGLE; (FR.) LYCOPE DE VIRGINIE; (GER.) VIRGINISHER WOLFSFUSS.

A TINCTURE OF THE WHOLE HERB LYCOPUS VIRGINICUS, L.

Description.—This common perennial weed usually attains a growth of from 6 to 24 inches. Stem erect, obtusely angled, stoloniferous, and glabrous or very slightly pubescent; stolons long, filiform, often tuberous at the apex, produced from the base of the summer stems. Leaves ovate or oblong-lanceolate, coarsely serrate especially in the middle, acute at both ends, and tapering at the base into a short petiole. Inflorescence in sessile, axillary, capitate-verticillate glomerules; bracts very short, resembling the calyx-teeth; flowers whitish or tending toward purple. Calyx campanulate, only slightly shorter than the corolla, and naked in the throat; teeth 4 to 5, ovate or lance-ovate, obtuse or slightly acutish, 3-nerved. Corolla bell-shaped, small, short, and hardly irregular; lobes 4, nearly equal, the upper entire and broader than the others, but neither galeate or concave. Stamens inserted, straight, erect, equidistant, only two furnished with anthers; anthers with two parallel cells. Style bulbous at the base, bifurcating at the apex, the inner surfaces of the lobes stigmatic. Fruit composed of 4 3-sided nutlets, truncate at the top and acute at the base, the lateral margins thickened, the superior 4-crenated; areola basal, small.

History and Habitat.—The Virginian Bugle-weed is indigenous to North America, where it ranges from Labrador to Florida, Missouri, and northwestward to British Columbia and Oregon. It grows in low, damp, and shady grounds, and blossoms from July to September. This is one of the species that caused Raffin-esque to vagarize, he disported with it to such an extent that it was forced to yield him 5 new species and 16 varieties "some of which might even be deemed species."

* ἄκος, Lykos, wolf; πός, pous, foot; from suppositional resemblance.
The medical history of this species seems to hang upon the laurels of \textit{L. vulgaris} of Europe. It was first mentioned by Schoepf,* but Drs. Pendleton and Rogers† first presented it in tangible form as an agent in incipient phthisis with hemoptysis. Rafinesque‡ thought exceeding well of its general properties, and as a means of producing diaphoresis without debility; he judged it a tonic sedative, and found it very useful in hemoptysis, and internal inflammation; he further claims that it acts somewhat like Digitalis, lowering the pulse, without producing any bad effects, nor accumulating in the system. Dr. Williams speaks of the plant§ as being "one of the most valuable styptics (hemostatics?) we possess in our vegetable Materia Medica. Most writers accept the idea that the plant is narcotic; we, however, infer, both from our own experience and that of others, that it is only sedative in that it removes, by checking hemorrhage, that nervous excitability and mental fear always accompanying such conditions. It is certainly an excellent hemostatic, very useful in generous doses, striving for its primary effect in epistaxis, hemoptysis, hematemesis, and menorrhagia. But two days have passed, at this writing, since we checked one of the most serious cases of epistaxis in our practice by the exhibition of teaspoonful doses of the tincture, one drachm to the ounce of water, ten minutes between doses; three doses alone were sufficient, after two hours of hemorrhage and the patient (a healthy man) greatly reduced. Dr. King says,§ Lycopus is decidedly beneficial in the treatment of diabetes, having cured when other means were useless, and has been of service in chronic diarrhoea and dysentery.

This valuable remedy was dismissed from the U. S. Phar. at the last revision; in the Eclectic Materia Medica the officinal preparation is \textit{Infusum Lycopus}.

\textbf{PART USED AND PREPARATION.}—The whole fresh flowering herb is treated as in the preceding drug. The resulting tincture has a clear brown color by transmitted light; an herbaceous odor; an astringent and slightly bitter taste; and an acid reaction.

\textbf{CHEMICAL CONSTITUENTS.}—The analysis of the Tildens|| determined the presence of a peculiar bitter principle, insoluble in ether, another soluble in ether, the two forming more than ten per cent. of the whole solid extract; tannin, and the usual plant constituents. The plant, according to the observations of myself and others, contains also a volatile oil. The properties of the plant are given up to water, and all seem to remain on drying except the last.

\textbf{PHYSIOLOGICAL ACTION.}—The symptoms caused in the human body by doses varying from ten drops to three drachms of the tincture, and of a wineglassful of the infusion¶ all point to the drug as increasing the tonicity of the capillaries and diminishing the vis-a-tergo in the larger vessels and the action of the heart itself. The symptoms, other than those of circulation, were: Nausea; flatulence,

\begin{itemize}
 \item [*] \textit{N. Y. Med. and Phys. Jour.,} I, 179.
 \item [†] \textit{Med. Flor.,} II, 20.
 \item [‡] \textit{Am. Med. Assoc.,} 1849, 902.
 \item [§] \textit{Am. Dict.,} 1870, 494.
 \item [‖] \textit{Jour. of Mat. Med.,} vol. I, N. S. 1859, 326.
 \item [¶] Allen, Encyc. Mat. Med. VI, 69.
\end{itemize}
gripping, and diarrhoea; decrease of sp. gr. of urine to as low as 1004, with diminished quantity, causes deposits of mucus, but no albumen; fleeting rheumatic pains, and pleurodynia; sensations of cardiac constriction; slight fever; and sleeplessness.

DESCRIPTION OF PLATE 117.

1 and 2. Whole plant, Binghamton, N. Y., July 31, 1885.
3. Flower.
4. Face of corolla.
5. Stamen.
6. Pistil.
7. Fruit.
8. Akene, \[\text{outer view}\].
9. Akene, \[\text{inner view}\].
10. Akene, \[\text{lateral view}\].
HEDEÔMA PULEGIOIDES, Pers.
N. ORD.—LABIATÆ.
Tribe.—SATUREIEÆ.
GENUS.—HEDEOMA,* PERS.
SEX. SYST.—DIANDRIA MONOGYNIA.

HEDEOMA.

AMERICAN PENNYROYAL.

SYN.—HEDEOMA PULEGIOIDES, PERS.; MELISSA PULEGIOIDES, LINN.; CUNILA PULEGIOIDES, LINN.; ZIZIPHORA PULEGIOIDES, R. & S.
COM. NAMES.—MOCK PENNYROYAL, TICK-WEED, SQUAW MINT, STINKING BALM; (FR.) POULIOT D’AMERIQUE; (GER.) AMERIKANISCHER POLEY.

A TINCTURE OF THE WHOLE PLANT HEDEOMA PULEGIOIDES, PERS.

Description.—This common, annual herb, grows to a height of from 6 to 12 inches. Stem erect, minutely pubescent, branching; hairs retuse. Leaves oblong-ovate, obscurely serrate, the floral similar, all narrowed at the base into a slender petiole. Inflorescence in loose, few-flowered, axillary whorls, often having the appearance of terminal racemes; flowers very small, pedicillate. Calyx ovoid or tubular, gibbous at the base, 13-nerved, bearded in the throat, and more or less two-lipped; upper-lip 3-toothed, broad and spreading; teeth triangular; lower-lip 2-cleft, divisions setaceous-subulate, and hispid-ciliate. Corolla bluish, pubescent, scarcely exceeding the calyx; tube naked within; limb 2-lipped, the throat evenly open; upper-lip erect, flat, and notched at the apex; lower-lip spreading, 3-cleft. Stamens 4, the inferior (fertile) pair the longer; fertile filaments ascending parallel and under the upper-lip; sterile tipped with a little head, destitute of cells or pollen. Anthers of fertile stamens, 2-celled. Fruiting calyx ovate-campanulate, strongly gibbous, the throat closed with a ring of villous hairs. Nutlets 4, ovoid, brown, slightly compressed.

History and Habitat.—This species is indigenous to North America, where it ranges from Canada to Iowa, and southward. It grows upon the most arid spots of open woods and fields, and blossoms from July to September.

The American Pennyroyal differs largely from the European Mentha pulegium in its botanical characters, but its action, as a medicine, is very like it. Our species is extensively used, in domestic practice, as an aromatic stimulant and carminative in colic of children; a diaphoretic in the beginning of colds (Pennyroyal Tea); and in large doses of a hot infusion, together with the pediluvium, in amenorrhœa. In the latter trouble, if of recent occurrence, it will often bring on the menses nicely; and, combined with a gill of brewer’s yeast, it frequently acts well

* 'Hedymum, hedysmos, from hé, hedy, sweet; osme, osme, smell.'
as an abortivant, should the intender be not too late with her prescription. The oil is anti-emetic, anti-spasmodic, and rubefacient in rheumatism; with raw linseed oil, it makes an excellent dressing for recent burns. The oil has been recommended as an ointment to keep off gnats, ticks, fleas, and mosquitoes; many who have camped in the northern woods, have anointed their hands, neck, and face with this body, to guard against the pests of that region, but with only partial success.

The herb and Oleum Hedeomae are officinal in the U. S. Ph.; in the Eclectic Dispensatory, the oil and Decoctum Hedeomae are recommended.

PART USED AND PREPARATION.—The whole fresh plant, at the flowering period, is treated as described for the root of Collinsonia. The resulting tincture has a deep orange color by transmitted light; retains the odor and taste of the plant to a high degree; and has an acid reaction.

CHEMICAL CONSTITUENTS.—Oil of Hedeoma.—This body is easily obtainable by distilling the fresh herb with water. It results as an almost colorless, light-yellow liquid, becoming darker with age. It retains the odor and taste of the herb, is neutral, has a sp. gr. of 0.941,† and is readily soluble in alcohol.

PHYSIOLOGICAL ACTION.—A case of poisoning by the oil is reported by Dr. Toothacker of a woman who took, at intervals, doses of a teaspoonful of the oil; she presented the following symptoms: Severe headache; difficult deglutition; great nausea, severe retchings, but inability to vomit; intolerable bearing down, labor-like pains, with tenderness of the abdomen; constipation; dyspnœa; semiparalysis of the limbs; nervous weakness, and prostration.

DESCRIPTION OF PLATE 118.

1. Whole plant, Binghamton, N. Y., July 21st, 1885.
2. Flower.
3. Calyx.
4. Mouth of corolla.
5. Pistil.
6. Fruiting calyx.
7. Nutlet.
(2–7 enlarged.)

* Page 119-2. † The sp. gr. of the oil of Mentha pulegium is 0.925. ‡ Phil. Jour. of Hom., 2, 655.
Collinsônia Canadénsis, Linn.
N. ORD.—LABIATÆ.
Tribe.—SATUREIÆ.
GENUS.—COLLINSONIA,* Linn.
SEX. SYST.—DIANDRIA MONOGYMA.

COLLINSONIA.

STONE-ROOT.

SYN.—COLLINSONIA CANADENSIS, Linn.; C. DECUS SATA, MCEN.; C. OVALIS, PURSH.

COM. NAMES.—STONE-ROOT, HORSE-WEED, HORSE-BALM, OX-BALM, KNOT-ROOT, KNOB-ROOT, GRAVEL-ROOT, RICH-WEED,† RICH-LEAF, HEAL-ALL,‡ HARDHACK;§ (FR.) BAUME DE CHEVAL; (GER.) CANADISCHE COLLINSONIE.

A TINCTURE OF THE ROOT OF COLLINSONIA CANADENSIS, Linn.

Description.—This glabrous perennial herb grows to a height of from 2 to 4 feet. Root nodular, depressed, and very hard and stone like; stem erect, somewhat 4-angled. Leaves opposite, petioled, ample, thin, varying from broadly ovate to oblong, tapering at the base, pointed at the apex, very veiny, and coarsely, sharply, and irregularly serrate. Inflorescence a naked, terminal, racemose, glandular-puberulent panicle; flowers lemon-yellow and lemon-scented. Calyx ovate, short, 10-nerved, lengthened in fruit, bearded midway in the throat, and containing a little honey-gland that partly surrounds, and is larger than, the two upper nutlets; lips 2, the upper flattened and 3-toothed, the lower 2-parted. Corolla elongated, somewhat infundibuliform, and having a bearded ring at the insertion of the filaments; lips 2, the lower larger, pendent, irregularly fimbriate, and bearded down the inner median line. Stamens 2 (the posterior pair wanting), much exserted, not declined, and spirally coiled in the bud; filaments long and straight, somewhat divergent; anthers introrse, 2-celled, the cells divaricate and contiguous. Style long, filiform, protruding toward one or the other stamen, and bifurcated at the apex into unequal lobes. Seeds triticose, carunculate.

History and Habitat.—The Stone-Root is indigenous to North America, where it ranges from Canada to Wisconsin, and southward to Florida, being particularly abundant in the North, and along the Allegheny Mountains. It habits rich woods, and flowers from July to September. The original specimen of this plant was sent to Peter Collinson, a promoter of science in England, by John Bartram, in 1735; he afterward forwarded it to Linnaeus, who named the species in his honor.

* In honor of Peter Collinson, F.L.S. (See “History and Habitat.”)
† The true Rich-weed is Pilea pumila, Gray (Urticaceæ).
‡ Properly, Brunella vulgaris, Linn.
§ This vulgarism denotes Spiræa tomentosa, Linn. (Rosaceæ).
Collinsonia was first introduced as a medicine by Schoepf, who praised its virtues in lochial colic, snake-bites, rheumatism, and dumb ague. Rafinesque states that the Aborigines used the plant as a vulnerary, and that Dr. Mease claimed to cure dropsy with an infusion of the root in cider;* he further states that, "in the mountains of Virginia, Kentucky, Tennessee, and Carolina, this genus is considered as a panacea, and used outwardly and inwardly in many disorders; it is applied in poultice and wash for bruises, sores, blows, falls, wounds, sprains, contusions, and taken like tea for headaches, colics, cramps, dropsy, indigestion, etc." Drs. A. French and Beers speak highly of it in pains of the bladder, ascites, and dropsy of the ovaries; also as a powerful tonic in putrid and malignant fevers, and in leucorrhœa. Dr. Hooker judges the principle so volatile that all infusions should be made in a tight vessel. Dr. Scudder speaks highly of the plant in chronic diseases of the respiratory tract, and says that it relieves pulmonary irritation, and acts as a stimulant expectorant. "In irritation of the pneumogastric nerve," he says, "heart disease, and that peculiarly distressing asthma simulating, and sometimes attending, phthisis, it has a superior influence in quieting irritation, giving increased strength to the patient. In hemorrhoids, where there is rectal irritation, with the feces in part scybalous and part semifluid, no constipation being present, it cures in doses of from one to two drops of the tincture in water, three or four times a day."

The official preparations in the Eclectic Materia Medica are: Infusum Collinsoniae and Tinctura Collinsoniae.

PART USED AND PREPARATION.—The fresh root is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, it is poured into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place. The tincture so prepared is, after straining and filtering, of a brilliant reddish-orange color by transmitted light; has no characteristic odor; a ligneous taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—An analysis of the root and leaves of this species, by C. N. Lochman,† resulted in the separation of a resin soluble in ether and partly in alcohol, wax, tannin, mucilage, and starch. A volatile oil is also present. The collinsonin of the pharmacies is the solid matter of the root, combined with chloride of sodium—not a specific principle, as might be supposed.

PHYSIOLOGICAL ACTION.—Dr. Dowle's experiment;‡ in which he took a teaspoonful and a half of the powder, gave the following symptoms: Numbness of the face and arms, with a sensation of enlargement of the parts; nausea; faintness and giddiness; an exhilaration something like that of whiskey; increased urine; and scybalous stool. Dr. E. M. Hale's provings add to the above the following effects: Headache with throbbing; yellow-coated tongue; vomiting; colic with desire for stool; and copious yellow bilious stools with tenesmus.

* Dr. Mease's account of the drug is set forth in his *Encyclopædia*, vol. II, 177.
† *Am. Jour. Pharm.,* 1885, 228.
‡ *U. S. Med. Investigator.*
Collinsonia appears to act as an irritant to the pneumogastric and vaso-motor nerves, and to mucous membranes in general, increasing the secretions of the latter, and causing inflammatory action to follow the congestion excited by its action.

Description of Plate 119.

1. Top of a flowering plant, Binghamton, N. Y., July 2d, 1885.
4. Upper surface.
5. Anther.
7. Calyx in section.
8. Seed.

(3–8 enlarged.)
Scutellária Lateriflóra, Linn.
N. ORD.—LABIATÆ.

Tribe.—Stachydeæ.

GENUS.—Scutellaria,* Linn.

SEX. SYST.—Didynamia Gymnospermia.

SCUTELLARIA.

SKULL CAP.

SYN.—Scutellaria laterifolia, Linn.

COM. NAMES.—Virginian Skull Cap, Mad-Dog Skull Cap, Hood-Wort, Mad-Weed, Mad-Dog Weed, Blue Pimpernel; (Fr.) Scutellaire; (Gr.) Helmkraut.

A TINCTURE OF THE WHOLE PLANT Scutellaria laterifolia, Linn.

Description.—This common perennial herb grows to a height of from 1 to 2 feet. *Root* fibrous; *stem* 4-sided, smooth, except upon the softly pubescent angles, upright, and much branched or simple. *Leaves* opposite, ovate-lanceolate or ovate-oblong, pointed, closely serrate, and rounded or somewhat cordate at the base; *petioles* about one-fourth the length of the blade. *Inflorescence* in opposite, axillary, unilateral, leafy racemes; *leaves*, first pair similar to those of the stem, the rest gradually reduced to bracts; *flowers* small, blue, single, in the axils of the floral leaves. *Calyx* in anthesis campanulate, 2-lipped; *lips* entire. *Corolla* bilabiate, erect; *tube* elongated, curved upward, dilated at the throat, and naked within; *lips* short, equal in length, the upper arched and having two lateral divisions connected with its basal sides, the lower spreading, convex, notched at the apex. *Stamens* 4, parallel, ascending under the upper lip, the superior pair shorter; *anthers* approximated in pairs, ciliate, those of the lower pair 1-celled by abortion, the upper 2-celled and cordate. *Style* 2-forked, the upper arm wanting or very small. *Fruiting calyx* closed, the upper lip with a helmet-like, and at length concave and enlarged, appendage on the back, the whole splitting at maturity, the upper lip usually falling away. *Nutlets* 4, wingless, depressed, tubercular, and situated upon a slightly elevated and bent gyno-base, inclining the fruit to the upper sepal; *seed* transverse; *embryo* curved; *radicle* short, incumbent upon one of the cotyledons.

History and Habitat.—Scutellaria is indigenous to North America, where it ranges from Canada to Florida and westward to British Columbia, Oregon, and New Mexico; it habits the borders of wet places, and flowers during July and August.

* Scutella, a saucer or shallow dish, alluding to the fruiting calyx.
About the first introduction of this plant into medicine was the experiments of Dr. Vandesveer, in 1772, who claimed to have found it curative and prophylactic in canine rabies, his reported cases being fourteen hundred; this seems a large number to fall to the lot of one physician; his son after him claimed the cure of forty cases more in three years. On account of the apparently slight properties inherent in this species by physical examination its worthiness was greatly doubted and the plant much railed against, even by many who never tried it. Following Vandesveer, many empirics and regulars used the remedy with success, while many others wrote essays against its being relied upon as an antihydrophobic. Dr. White, of Fishkill, assured Rafinesque that the plant preserved him from rabies after being bitten by a dog from whose bite others died. Rafinesque states his full belief in the prophylactic prowess of the plant, and adds that many laymen and physicians claim that the plant never fails to ward off or cure the disease. The dose given was a gill of the infusion four times a day, and the plant applied to the wound. Dr. S. W. Williams, whose cry of “charlatan” and “quack” was always raised upon the slightest pretext, lends his support to the probable virtue of the plant. Mr. Youatt, a distinguished veterinary surgeon, spoke highly of its virtues in this direction, but omitted it entirely from his treatise on canine rabies. The natural order Labiatae yields species of many of its genera that are valued by the aborigines of countries in which they grow as antihydrophobics. Some value should at least be considered under these circumstances, as native medication is always the result of long and more or less successful experiment.

The plant has proved itself a useful antispasmodic, nervine, and tonic in chorea, convulsions, tetanus, tremors, delirium tremens, wakefulness in chronic disorders, and many other diseases when a tonic combining nervine powers might be deemed necessary; it is also considered diaphoretic and diuretic.

Scutellaria is officinal in the U. S. Ph. as Extractum Scutellariae Fluidum; in the Eclectic Materia Medica it is recommended in the same preparation as well as Extractum Scutellariae Alcoholicum, Infusum Scutellariae, Extractum Scutellariae Composita,* and Pilula Valeriana Composita.†

PART USED AND PREPARATION.—The whole fresh blossoming plant, gathered in August, when fruiting is well advanced, is treated as in the preceding species.‡ The resulting tincture is opaque. In thin layers it has a deep brown color by transmitted light: its taste is extremely bitter and very astringent; and its reaction acid.

CHEMICAL CONSTITUENTS.—According to the analysis of Cadet, this species contains: α, a greenish-yellow fixed oil, soluble in ether; β, an essential oil; γ, a bitter principle, soluble in water, alcohol, and ether; δ, a peculiar volatile matter; ε, a peculiar astringent principle; ξ, albumen; υ, a sweet mucoid body; and the usual plant constituents.

* Scutellaria, Cypripedium, Humulus, and Lactuca.
† Scutellaria, Valeriana, Chamomilla, Eupatorium, Quinine, and Causticum.
‡ Page 119-2.
[Scutellarine.*—This unclassifiable substance is a precipitate, by alum, of the evaporated tincture made with 76 per cent. alcohol, after dilution with several times its bulk of water. It results as a neutral non-resin, in the form of a greenish†-brown, gritty, resinous powder, insoluble in water, and partly soluble in alcohol and ether. It is said to retain the activity of the plant as far as known.]

PHYSIOLOGICAL ACTION.—Gordon’s experiments with from 10 to 60 drops of the tincture resulted substantially as follows: Mental confusion and stupor; headache and vertigo; photophobia with dilated pupils; scanty urine, with difficult micturition; variable pulse with final reduction of the heart’s action from 70–72 to 52 with intermission; general languor and tremulousness; followed by wakefulness and restlessness.

Description of Plate 120.

1. Upper portion of plant, Binghamton, N. Y., July 31st, 1886.
2. Flower.
3. Lower stamen.
4. Upper stamen.
5. Calyx.
6. Fruiting calyx.
7. Fruiting calyx, showing fruit.
 (2–9 enlarged.)

* Scutelline, so called, is valueless.
† Chlorophyll.
Làmiu̱m Álbum, Linn.
N. ORD.—LABIATÆ.
Tribe.—STACHYDEÆ.
GENUS.—LAMIUM, * TOURN.
SEX. SXST.—DIDYNAMIA GYMNOSPERMA.

LAMIUM.

DEAD NETTLE.

SYN.—LAMIUM ALBUM, LINN.
COM. NAMES.—DEAD NETTLE, WHITE ARCHANGEL; (FR.) L'ORTIE BLANCHE; (GER.) WEISSE TAUBNESSEL, WEISSBIENENSANG.

A TINCTURE OF THE LEAVES AND FLOWERS OF LAMIUM ALBUM, LINN.

Description—This more or less erect, hairy, and very leafy perennial herb, grows to a height of 1 foot or more. Stem decumbent at the base. Leaves ovate, acuminate, coarsely and doubly serrate, with a cordate or truncate base; petioles manifest upon the upper, and long, upon the lower part of the plant. Inflorescence in several axillary whorls; flowers large. Calyx tubular-campanulate, about 5-nerved; teeth 5, nearly equal, very slender, and awl-pointed, but not spinescent. Corolla white, about 1 inch long; tube curved upward from an obliquely-contracted base, having a ring of hairs inside; throat rather narrow; upper lip oblong, fornicate, narrowed at the base; lateral lips small, broadened down to the throat, and each bearing upon its upper margin a spur-like appendage that appears like a projection from the throat; lower lip spreading, 3-lobed, the middle lobe notched at the apex, and contracted into an almost stipitate claw at the base. Stamens 4, ascending under the galeate upper lip of the corolla, and not deflexed after anthesis, the anterior (inferior) pair longer, both pairs parallel and fertile; anthers hissute, approximate in pairs; cells 2, divergent, opening lengthwise. Style filiform, forked at the apex into 2 divergent, stigmatose, pointed lobes. Nodules somewhat triquetrous, sharply 3-angled, truncate, and hollowed out at the apex.

History and Habitat.—The Dead Nettle comes to us from Great Britain, France, and Germany, where it grows in waste places and along hedges; with us it is becoming naturalized in Eastern New England, where it takes up its usual habitat, and blossoms in July and August.

The very unpleasant odor and bitter taste of this species causes it to be exempt from use by grazing cattle; yet Linnaeus says that in Sweden it is gathered by the peasants and cooked as a pot-herb, the process of boiling dissipating, in the most part, the principles of the plant.

*Anivos, lamos, the throat, alluding to the ringent corolla; or lamia, a witch, hag, or demon, to which the flower is likened in appearance.
Although this plant has been used from ancient times, and is mentioned by Dioscorides and Pliny, yet it has received but little thought or experiment. The principal uses as a drug are all mentioned in a few words by Gerarde, who says: *: "Archangel, stamped with vinegar, and applied in manner of a pultis, taketh away Wens and hard swellings; the King's Evill, inflammation of the kernels under the ears and jawes, and also hot fierie inflammation of the kernels of the necke, armholes, and flanks. It is good to bathe those parts with the decoction of it The later Phisitions thinke that the white flowers do staie the whites, and for the same purpose divers do make of them a conserve."

PART USED AND PREPARATION.—Two parts of the fresh leaves, and one part of the fresh blossoms are to be chopped and pounded to a pulp, enclosed in a piece of new linen, and subjected to pressure. The expressed juice should then be thoroughly mixed with an equal part by weight of alcohol. After allowing the mass to macerate eight days in a well-stoppered bottle, in a dark, cool place, the tincture may be separated by filtration. This tincture should be opaque. In thin layers, it has a reddish-brown color by transmitted light; its odor is sourish and herbaceous, reminding one of old buckweat honey-comb; its taste very like its odor, and followed by a bitterishness; and its reaction strongly acid.

CHEMICAL CONSTITUENTS.—Lamium contains a bitter principle and a volatile oil, but neither have as yet been isolated.

PHYSIOLOGICAL ACTION.—Little is known of the action of this plant, the provings of Hahnemann and others giving few characteristic symptoms. Its action seems to be spent upon the mucous membranes in general, and upon the female generative organs in particular, where it causes a sort of inflammatory excitement.

Herball, p. 568.
HYDROPHYLLUM VIRGINICUM, Linn.
HYDROPHYLLUM.

WATERLEAF.

SYN.—HYDROPHYLLUM VIRGINICUM, LINN.
COM. NAMES.—VIRGINIAN WATERLEAF, BURR FLOWER.

A TINCTURE OF THE WHOLE FRESH PLANT HYDROPHYLLUM VIRGINICUM, LINN.

Description.—This smoothish perennial herb grows to a height of from 1 to 2 feet. Rootstock creeping, scaly-toothed by the withered sheathes of previous stems. Stems generally simple, sometimes 2-forked; leaves ample, pinnately divided, and conspicuously petioled; leaflets 5 to 7, ovate-lanceolate or oblong in general outline, sharply and irregularly cut-toothed, the lower pair mostly 2-parted, the upper three confluent, all acuminate or acute. Inflorescence in terminal and upper axillary cymose clusters; flowers pinkish-white; peduncles forked, longer than the petioles of the leaves from whose axils they spring. Calyx deeply 5-parted, naked at the sinuses; teeth narrowly linear, bristly ciliate. Corolla campanulate, 5-cleft, the lobes convolute in the bud; tube furnished with five adnate appendages fixed to the midrib of each petaloid lobe, the incurved free margins approximated by interlocked hairs, thus forming a sort of nectariferous tube. Stamens exserted; filaments long, filiform, bearded about the middle by a few long hairs; anthers linear, versatile. Ovary bristly hairy, 1-celled; ovules amphitropous, enveloped by the dilated fleshy placentae. Style exserted, bifurcated at the summit; stigmas 2, capitate, minute. Fruit a spherical, loculicidal capsule about the size of a pea. Seeds 4, or generally fewer by abortion; testa pitted or reticulated; albumen cartilaginous.

Hydrophyllaceae.—This large and innocent family of commonly hairy herbs is represented in North America by 14 genera, comprising 115 species, and 17 recognized varieties. Leaves mostly alternate; stipules absent. Inflorescence in more or less unilateral, mostly bractless cymes or scorpioid racemes; flowers regular, 5-merous and 5-androus, blue or white. Calyx sometimes with nearly separate sepals, the sinuses often appended. Stamens borne on the base of the corolla and alternate with its lobes. Ovary entire, 1-celled, or sometimes 2-celled.

* hoo, hutor, water; odel, phyllon, leaf; the application doubtful.
by union of the placentæ in the axis; _placentæ_ 2, parietal; _ovules_ amphiropous or anatropous, pendulous or nearly horizontal. _Styles_ 2, or single and 2-cleft. _Fruit_ a 2-valved, 2 to many-seeded capsule; _seeds_ pitted or reticulated; _embryo_ small; _albumen_ copious.

History and Habitat.—The Waterleaf is indigenous to North America, where it ranges from Canada southward to the mountains of North Carolina and northward to Alaska, seeking moist, shady grounds, and flowering from June to August. The young leaves serve in some localities as a salad, called Shawanese Lettuce, and are eaten as a potage in other places, under the name of John's Cabbage. We have no previous medical history of this plant, or any other species of the order.

PART USED AND PREPARATION.—The fresh flowering plant is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, it is poured into a well-stoppered bottle, and allowed to macerate for eight days in a dark, cool place. The tincture thus formed after filtration has a deep crimson-brown color by transmitted light, a peculiar bitterish odor, an astringent taste, and an acid reaction.

PHYSIOLOGICAL ACTION.—The only account of the action of this plant is that furnished by Dr. P. B. Hoyt,* who records the following symptoms caused in himself: Dull headache; burning, smarting, and itching of the eyelids with profuse lachrymation; agglutination of the lids in the morning; injection of the sclera, and photophobia.

Description of Plate 122.

1. End of flowering plant, Binghamton, N. Y., June 1st, 1885.
2. Flower.
3. Petal and appendage.
4. Stamen.
5. Nectary.
6. Pistil.
7. Style and stigmas.
8. Leaf.

(3–7 enlarged.)

CONVÓLVULUS ARVÉNSIS, Linn.
N. ORD.—CONVOLVULACEÆ.

Tribe.—CONVOLVULÆ.

GENUS—CONVOLVULUS,* LINN.

SEX. SYST.—PENTANDRIA MONOGYNIA.

CONVOLVULUS.

BINDWEED.

SYN.—CONVOLVULUS ARvensis, LINN.

COM. NAMES.—BINDWEED; (FR.) LE LISERON; (GER.) DIE WINDE.

A TINCTURE OF THE WHOLE PLANT CONVOLVULUS ARvensis, L.

Description.—This low perennial attains a growth of from 2 to 5 feet. Root deeply and extensively creeping; stem nearly glabrous, procumbent or twining over surroundings; leaves ovate-oblong, sagittate tending to hastate, entire, the basal auriculate lobes acute. Inflorescence axillary; peduncles mostly 1-flowered flowers matinal, white tinged with rose; bracts remote from the flower, subulate. Calyx naked at the base; sepals equal, rounded. Corolla about three-quarters of an inch long, open infundibuliform, more or less plicate at the sinuses and obscurely 5-notched. Stamens included; filaments dilated at the base. Ovary entire; style single, persistent; stigmas 2, filiform, mostly spreading or revolute. Fruit a 2-celled globose capsule. Seeds 2 in each cell; cotyledons broad, foliaceous.

Convulvaceæ.—This large and well-distinguished family of mostly tropical or subtropical plants, is represented in North America by 8 genera, containing in all 73 species and 17 recognized varieties. The order is composed of herbs or shrubs with stems that generally twine or trail. Leaves alternate, petioled (absent in Cuscuta); stipules none. Inflorescence truly axillary, the peduncles 1-flowered or cymosely 3- many-flowered; flowers regular and perfect, 5-merous or rarely 4-merous. Calyx persistent; sepals mostly distinct, imbricated. Corolla with an entire or lobed limb. Gynoecium generally 2-carpelled. Stamens as many as the lobes of the corolla and inserted low upon its tube. Hypogynous disk evident, annular. Ovary 2- to 6-celled; style single, sometimes divided; stigma terminal or introrse. Fruit capsular or fleshy; seeds comparatively large; embryo filling the testa; albumen mucilaginous, surrounding, or surrounded by, the embryo.

In this order our proven plants are: The Oriental Scammony (Convulvulus Scammonia, Linn.), whose root yields an irritant but nearly tasteless purgative, often given to children as an anthelmintic on account of the smallness of the requisite dose for purging; Jalap, the dried tubercules of the Mexican Exogonium Purga, Benth., is a certain, powerful, and speedy drastic purgative used as above;

* From convoluto, to twine.
it has a gripping effect, however, making it less pleasant than Scammony; and Convolvulus Duartinus, the common Morning Glory (*Ipomea Bona-nox*, Linn.), a native of the tropics, so extensively planted north as an ornamental "vine."

Many other genera furnish plants more or less used in general medicine, viz.: The North African *Ipomea Nil*, Roth., whose seeds, in 50-grain doses, prove purgative, and in action greatly resemble Jalap; the East Indian *Ipomea Turpethum*, R. Br., the Jamaican *I. tuberosa*, Linn., and the St. Domingo *I. cathartica*, Poir., are all used in their countries as purgatives, though the latter is generally too strong in its action to be safely given. The leaves of the Madras *Argyreia bracteata*, Wall., are used by the natives in decoction as fomentations for scrofulous enlargements. The root of the tropical *Batatas paniculata*, Chois., is cathartic; while those of the East Indian *B. edulis* are wholesome, and, as cultivated in the warmer climates, form an article of commerce known as Sweet Potatoes. Our common Bracted Bindweed (*Calystegia sepium*, R. Br.) has a purgative root, as has also the European *C. Soldanella*, Röm. & S. Oil of Rhodium, a bitter essential oil, used to attract rats and mice to traps, also to adulterate oil of roses, is distilled from the sternutatory wood of *Convolvulus* (Breweria, Rhodoriza) *scoparius*, Linn.

History and Habitat.—This too common European plant has become naturalized in the North-eastern United States, where it flowers in June. It is said to be a sure indication that the soil is dry in all localities that it chooses as its habitat.

This plant has been used much like Jalap and Scammony, in 40-grain doses of the jointed and vermiculate roots, as a diuretic and gentle laxative.

PART USED AND PREPARATION.—The whole fresh flowering plant, in a slightly wilted condition, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, it is poured into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place.

The tincture, separated from this mass by pressing and filtering, has a deep reddish-brown color by transmitted light; a somewhat nauseous odor; a slightly astringent, tea-like taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—*Convolvulin*. This so-called resinoid, obtained from the roots of this species, is as yet of doubtful chemical nature. It remains to be determined whether it contains the principles found in Jalap, Scammony, etc.

PHYSIOLOGICAL ACTION.—The few symptoms so far determined in this drug, point to it as an irritant to the mucous membranes of the alimentary tract, and a stimulant to the neighboring secretory glands. *Convolvulus* causes eructations, flatulent colic, and liquid stools very similar to those following Jalap.

DESCRIPTION OF PLATE 123.

2. Anther.
3. Pistil.
4. Section of ovary.
 (2-4 enlarged.)
Solanum Dulcamara. Linn.
DULCAMARA.†

BITTERSWEET.

SYN.—SOLANUM DULCAMARA, LINN. DULCAMARA FLEXUOSA, MOENCH. RAMUS NOVELLUS, L.

COM. NAMES.—BITTERSWEET, WOODY NIGHTSHADE, VIOLET BLOOM; (FR.) DOUCE-AMERE; (GER.) BITTERSÜSS.

A TINCTURE OF THE FRESH GREEN BRANCHES ABOVE THE WOODY STEM, OF SOLANUM DULCAMARA, LINN.

Description.—This beautiful and falsely dreaded shrubby herb, seldom reaches a length of more than 5 feet, unless well supported in a hedge or by a wall; it then may extend to various lengths, in some cases reaching 18 feet or more. Root woody, irregularly creeping and branching, pale yellow. Stem herbaceous or shrubby, flexuous, pubescent, scarcely climbing. Branches many, weak, flexuous and somewhat angular, with a dull green bark, destitute of thorns or spines. Leaves alternate, petiolate, from 2 to 3 inches long, the upper surface smooth, the under usually pubescent; the lower few leaves are either ovate or ovate-cordate, the upper vary from hastate to auriculate, all entire. Flowers drooping, on lateral, branching, extra-axillary peduncles, forming a loose spreading corymb with bractless pedicels. Calyx small, 5-parted. Corolla plaited, and valvate or induplicate in the bud; when expanded it is wheel-shaped, 5-cleft, with the acute-lanceolate lobes reflexed, each with two green ovate spots at its base. Stamens exerted, mostly equal, their filaments inserted upon the tube of the corolla. Filaments short, more or less triangular. Anthers large, erect, blunt, bright yellow, converging into a cone about the style, and opening by two pores or chinks at the apex. Pollen grains minute, ovoid and induplicate. Ovary rounded, 2-celled, containing many ovules upon the axis. Ovules curved (campylotropous), sometimes merging into the amphitropic form. Style simple, filiform, protruding beyond the tube formed by the anthers. Stigma single. Fruit a 2-celled, bright scarlet, oval, translucent, thin-skinned, bitter and juicy berry. Seeds numerous, whitish, somewhat plano-convex, their surfaces minutely pitted.

History and Habitat.—This very common plant prefers moist banks, old fences and hedges, the slightly higher ground on the margins of swampy spots, and disused ground about old dwellings; blossoming in June and July. Its place

* Derivation unknown.
† Dulcis, sweet; amarus, bitter.
among American plants is doubtful; by some authors it is considered indigenous, by others as advanced from Europe; judging from its locations here, I am inclined to favor the latter idea. It is found in the greater part of Europe, in North Africa, and Asia Minor, and the northern parts of India and China. The genus Solanum is very interesting, containing as it does some of our most useful table vegetables, noxious weeds, and excellent remedies. Notably among the edible vegetables are the potato, *Solanum tuberosum*, the tomato, *Solanum lycopersicon*, and the egg plant, *Solanum melongena*, all extensively cultivated and having their origin doubtless in the tropical regions of South America. From the common names, Bittersweet and Nightshade, confusion has often arisen among the laity in mistaking it for Belladonna (Deadly Nightshade), and Celastrus, the staff- vine, often called Bittersweet; but Belladonna does not grow spontaneously in this country, and Celastrus is too widely different to be confused with Dulcamara except in name.

Dulcamara is still retained in the U. S. Ph., as *Extractum Dulcamare Fluidum*. In the Eclectic Materia Medica its preparations are *Decoctum Solani* and *Extractum Dulcamara*.

PART USED AND PREPARATION.—The fresh, green branches that are still pliant, and their leaves, should be gathered just as the plant is budding to blossom, and chopped and pounded into a pulp, inclosed in a piece of new linen and pressed. The juice thus expressed should, by brisk succussion, be mingled with an equal part by weight of alcohol. This mixture should then be allowed to stand at least eight days in a well-stoppered bottle, in a dark, cool place, and filtered before using.

Thus prepared it is by transmitted light of a pale chestnut color, having at first a decidedly bitter, then sweet taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—Solania, C_{43}H_{71}NO_{16}, fully described under *Solanum nigrum*, 125, is undoubtedly also a separate principle in this species. Wittstein claims it to be easily obtainable from the young shoots of the plant.

Dulcamarin.*—C_{22}H_{34}O_{10}. This glucoside, extracted from Wittstein's so-called alkaloid Dulcamarin, C_{65}H_{100}N_{2}O_{29}, is in the form of a permanent, slightly yellow powder, odorless, with at first an exceeding bitter, then a lasting sweet taste. It melts with heat, decomposing at 205° (401° F.), and is soluble in water, alcohol and ether, insoluble in chloroform and benzol. Dulcamarin readily separates in boiling with a mineral acid into dulcamaretin (C_{16}H_{26}O), and glucose.

Pfaff's analysis of 100 parts of the dried stems resulted as follows:

Dulcamarin	21.817	Resin containing Benzoic Acid,	2.74
Vegeto-animal matter	3.125	Gum, Starch, and Salts of Lime,	2.00
Gummy extractive	12.029	Extractive and Lime Salts,	4.00
Gluten and green wax	1.4	Woody Fibre,	62.00

(Excess, 9.111)

* Picroglycion, Dulcarin.
PHYSIOLOGICAL ACTION.—The first action of this drug is somewhat narcotic, but of short duration in this sphere. Upon the circulation the action is quite marked, it causing venous congestion, attended with great pain, heat, nausea and vomiting, and sudden prostration. The head droops and oscillates forth and back, the patient is giddy, the heart palpitates, the mouth and fauces become hot and dry, and the face and ears cyanotic. Post mortem: the medulla is found as to its substance healthy, though there is great injection of the blood-vessels above and below it. One clearly defined case of poisoning by the berries of this plant is reported in the Lancet of June 28th, 1856, p. 715, in which the identity of the plant seems to have been certain, and that the berries of Solanum nigrum, which are much more poisonous, took no part, resulted in the death of a boy aged 4. The following symptoms were noted: after eleven hours, during which no symptoms of importance were observed, he was attacked with vomiting, purging and convulsions, which continued throughout the day, the child being insensible during the intervals. He died convulsed in about 24 hours. The vomited matters were of a dark greenish color, and of a bilious character.

Notwithstanding numerous cases reported of poisoning by this plant it cannot justly be considered as generally poisonous, as most animals and persons who have eaten of it or its fruit, show no serious symptoms.

It is to be deplored that the berries were not incorporated in the tinctures proven, as they seem to be the most toxic part of the plant.

DESCRIPTION OF PLATE 124.

2. Flower (enlarged).
3. Pistil (enlarged).
4. Stamens (enlarged).
5. Section of Ovary.
6. Pollen grains x 380.
SOLANUM NIGRUM, Linn.
N. ORD.—SOLANACEÆ.
GENUS.—SOLANUM.
SEX. SYST.—PENTANDRIA MONOGYNIA.

SOLANUM NIGRUM.

BLACK NIGHTSHADE.

SYN.—SOLANUM NIGRUM, LINN.; S. PTEROCALON, DUNAL.; S. CRENATO-DENTATUM, PTYCANTHUM, AND INOPS, D. C.

COM. NAMES.—COMMON OR GARDEN NIGHTSHADE, BLACK NIGHTSHADE, DEADLY NIGHTSHADE;* (FR.) MORELLE NOIR; (GER.) SCHWARZER NACHSCHATTEN.

A TINCTURE OF THE WHOLE HERB SOLANUM NIGRUM, LINN.

Description.—This low, weedy, annual herb grows to a height of from 1 to 2 feet. Stem angular, glabrous, pubescent when young, diffusely spreading or branching, and more or less rough on the angles; branches mostly twisted. Leaves ovate, cuneate, somewhat obtusely, acutely, or acuminately tipped, and usually much perforated by insects; margin varying from coarsely, crenately, or irregularly toothed, to entire. Inflorescence in small, pedunculate, lateral, and extra-axillary, umbel-like, drooping cymes; flowers quite small, white or whitish. Calyx much shorter than the corolla, merely spreading in fruit; teeth ovate, acutish. Corolla wheel-shaped, 5-parted, valvate in the bud; petals oblong-lanceolate, reflexed, closely studded with minute papillæ upon the upper surface. Stamens exserted; filaments very short, more or less hairy inside; anthers large, connivent around the style, blunt, opening by two terminal pores. Ovary globular, 2-celled; style columnar, mostly included, hairy at its base; stigma capitate. Fruit a small cluster of blue-black, globular berries, each about the size of a large pea. Seeds numerous, flattened; embryo slender, curved; cotyledons semiterete, not larger than the radicle.

Solanaceæ.—This large, well-known order, whose representatives grow mostly in tropical and subtropical regions, furnishes North American botany with 14 genera, 101 species, and 24 recognized varieties. The order is characterized as follows: Herbs, shrubs, or even trees, commonly rank-scented, and having a watery juice. Leaves alternate, never truly opposite, though, being often unequally geminate they have the appearance of being opposite; stipules none. Inflorescence properly terminal and cymose, but variously modified, sometimes scorpioid-racemiform; pedicels not bracted, or, if bracted, then not in the axils. Flowers perfect and mostly regular, 5-4-merous. Corolla with its lobes induplicate-valvate, plicate,
or very rarely imbricate in the bud. Ovary wholly free, normally 2-celled; placenta axillary; ovules indefinitely many, anatropous or amphitropous; style undivided; stigma entire or sometimes bilamellar. Fruit either capsular or baccate; embryo terete and incurved or coiled, or sometimes almost straight; albumen fleshy; cotyledons rarely much broader than the radicle.*

This order furnishes our Materia Medica with twenty drugs, which are, beside the five here described: The European Belladonna, or Deadly Nightshade (Atropa Belladonna, Linn.); the Tropical Cayenne Pepper (Capsicum Annuum, Linn.); the Pacific coast Tree Stramonium (Datura arborea, Linn.); the Chinese Datura (D. ferox, Linn.), probably the most poisonous species in the family; the Indian Datura (D. metel, Linn.); the Tropical American Tomato, or Love-apple (Lycopersicum esculentum, Mill.); the true Mandrake of Southern Europe (Atropa mandragora, Linn.); the South Brazilian Arrebenta Cavallos (Solanum Rebenta, Vell.); the Southern and West Indian Apple of Sodom, or Nipple Nightshade (S. mammosum, Linn.); the Brazilian Jacquiriöa, or Gyquiriöa (S. oleraceum, Vell.); the European Jerusalem Cherry (S. pseudo-capsicum, Linn.); the common Potato (S. tuberosum, Linn.) and its diseased state (S. tuberosum ægrotans), due to the growth of a fungus known as Peronospora infestans; the Peruvian Floripondio (Datura sanguinea, R. et Pav.); the Australian Corkwood Tree (Duboisia myoporoides, R. Br.), and Pituri (D. Hopwoodi, Von M.).

Numerous drugs, still unproven but used in general practice, belong to this order, notably, the Indian Guinea Pepper (Capsicum fastigiatum, Blume), which, with the Indian Goat Pepper (C. frutescens, Linn.), is a much more powerful stimulant than Cayenne, and often produces violent pain and purgation. The genus Solanum further furnishes to medicine the Indian expectorant, S. Jacquiriöa, Willd.; the West Indian astringent, S. Bahamense, Linn.; the Brazilian active cathartic and vulnerary, Juripeba (S. paniculatum, Linn.); the South American sudorific, S. cernuum, Vell.; and many other species used in their native countries as purgatives, diuretics, deobstruents, and vulneraries. The fruit of the West Indian Calabash Tree (Crescentia Cajete, Linn.) yields a pulp that is considered at once vulnerary and pectoral. In the south of Europe the White Henbane (Helleborus albus, Linn.) is considered much more active than H. niger; and Arabia yields, according to Foreskal, a species, H. Datura, used by the natives to produce intoxication, and supposed to be the nepentes of Homer. The genus Cestrum contains many active species, those especially notable being, the South African C. venenatum, Thursb., used by the Hottentots as a poison for their spears, and to poison their bait for wild beasts; C. macrophyllum, Vent., and C. nocturnum, Lam., are also toxic, and have been used with some effect in chorea; while C. Hediunda, Lam., and C. auriculatum, L. Her., are febrifugal. Many species of Physalis are valuable, especially the South European P. flexuosus, Linn., which is said to be narcotic, diuretic, and alexiteric; and the Winter Cherry, P. Alkekengi, Linn., which has been considered an excellent diuretic from the days of Dioscorides; Ray considered it also anti-podagric. The bitter leaves of the Peru-

vian *Saracha umbellata*, Jacq., are used as an anodyne emollient. In New Grenada the Matrimony Vine (*Lycium umbrosum*) is adjudged an excellent remedy in erysipelas; and, lastly, the South American *Himeranthus uncinatus* is esteemed by the natives as an aphrodisiac, stimulating the ingester to venery.

History and Habitat.—Black Nightshade is a cosmopolite; in this country it grows in damp and shady waste grounds, generally throughout the eastern section, where it flowers from July to frosty weather.

This species has been used in general practice, especially as a resolvent, from A. D. 54 (Dioscorides) to within a few years. The principal use of the plant has been in dropsy; gastritis; glandular enlargement; nervous affections; general inflammations of mucous membranes; herpetic, scorbutic, and syphilitic eruptions; and as a narcotic. The Arabs use the bruised leaves, with aedeps, as an application to burns, bullae, and felon. In Dalmatia the root is used to cure hydrophobia, and is fried in butter and eaten to produce sleep; while in Bohemia the blossoming plant is hung over the cradle of infants to act as an hypnotic. Orfila claims the extract equal in power and energy to lacticum. In Spain patients are often said to be cured of phthisis by burying them up to the neck in garden loam, then, after removal, rubbing the body thoroughly with an ointment of the leaves of this species.

PART USED AND PREPARATION.—The whole plant, gathered when, in early autumn, it is in both flower and fruit, is treated as in the preceding species.

The resulting tincture has a brownish-orange color by transmitted light, no distinguishing odor, a slightly astringent and woody taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—*Solani*, \(\text{C}_{43}\text{H}_{71}\text{NO}_{16} \). This peculiar body, having, according to all observers up to date, both alkaloidal and glucosidal reactions, needs much careful investigation before either its chemical or physical nature can be fully understood. It is readily obtainable from all species of the genus Solanum, but is especially prevalent in this. According to Wittstein, it crystallizes in white, flat, quadrangular prisms of mother-of-pearl lustre, or results as an amorphous powder of like appearance; it is inodorous, and has a bitter, disagreeable, long-lasting, rancid, and acrid taste. It is soluble to only a slight extent in water, its solution becoming frothy on agitation; readily dissolves in alcohol; and is insoluble in ether. It shows a decided glucosidal nature by breaking down under the action of heat and hydrochloric acid, as follows:

\[
\text{Solanin} + \text{Water} \rightarrow \text{Glucose} + \text{Solanidine} \]

\[
\text{C}_{43}\text{H}_{71}\text{NO}_{16} + (\text{H}_2\text{O})_3 = (\text{C}_6\text{H}_{12}\text{O}_6)_3 + \text{C}_{23}\text{H}_{41}\text{NO}.
\]

PHYSIOLOGICAL ACTION.—Numerous cases of poisoning have been reported, among which the following will serve to show the action of the plant:

Three children who had eaten the berries complained of headache, vertigo, nausea, colic, and tenesmus. There was copious vomiting of a greenish-colored

* Discovered in the plant in 1821 by M. Desfosses, *Journal de Pharmacie*, vi, 374, and vii, 414.
† This body is a very strong base, and crystallizes in long needles (Schorlemmer).
matter, thirst, dilated pupils, stertorous respiration, convulsions, and a tetanic stiffness of the limbs. Death followed in all cases but one only during the acute symptoms.*

A boy, after eating the berries, suffered horrible symptoms, dilation of the pupil, burning in the stomach, delirium, agony, trembling of the limbs, cold sweat, and death.†

Gataker‡ commenced his experiments with the drug by giving a grain, which acted gently as an evacuant by sweat, urine, and stool; on increasing the dose until it was quite large, it produced vomiting, profuse perspiration, or too copious urination or diarrhoea, and sometimes dimness of vision and vertigo.

A family, having eaten of the leaves, were attacked with swelling of the face, accompanied by burning heat, and followed by gangrene.§

A boy, aged eight years, ate some of the black berries of this plant, which induced a state of stupor and coma, attended with fever. He complained of great pain in the pit of the stomach, and was harassed with nausea and retchings.||

A little girl ate some of the berries. She was found entirely insensible, lying in a deep, apoplectic stupor, all the muscles relaxed, the face flushed and the pulse full and irregular. She continued in this state about six hours, then gradually recovered.*

Four of the ripe berries caused deep sleep in a child (age not given).**

Two boys, aged two and three years, having eaten of the berries, had convulsions and spasms; they stretched their hands during the spasms, as if they would grasp something, carrying their hands to their mouths, chewing and swallowing, etc.††

Thus Solanum Nigrum acts as an irritant to the brain and spinal cord, and secondarily upon the circulation through the vaso-motor system; the irritation seems greatest upon the sensory nerves and less upon the motor. Its action upon the brain is quite parallel with that of Belladonna, but evidently greater than Stramonium or Hyoscyamus. Its action upon the eye is more like that of Stramonium than Belladonna, and directly opposite to that of Gelsemium.

** Description of Plate 125. **

1. Part of a fruiting and flowering branch, Binghamton, N. Y., Sept. 1st, 1885.
2. A petal.
3. An effete stamen.
4. Pistil.
5. Horizontal section of the ovary.
(2-5 enlarged.)

† K. Ch. Grelin, Florae bohemic, p. 520.
‡ Versuch. u. Bemerk. des Edin., pp. 95 and 98.
|| Alibert, Nouveaux Éléments de Thérapeutique.
** Eberle, Therapeutice.
†† Ibid.
†† Journal de Clinic Medical.
HYOSCYAMUS NIGER, Linn.
N. ORD.—Solanaceæ.
GENUS.—HYOSCYAMUS,* Tourn.
SEX. SYST.—PENTANDRIA MONOGYNIA.

HYOSCYAMUS.

HENBANE.

SYN.—HYOSCYAMUS NIGER, Linn.; H. FLAVUS, FUCHS.; H. PALLIDUS, Kit.; H. VULGARIS, RAI.; H. LETHALIS, SALISB.; H. AGROSTIS.

COM. NAMES.—BLACK HENBANE, HOGBEAN, STINKING NIGHTSHADE, POISON TOBACCO; (FR.) JUSQUIAME NOIR; (GER.) BILSENKRAUT.

A TINCTURE OF THE WHOLE HERB HYOSCYAMUS NIGER, Linn.

Description.—This annual, or biennial, heavy-scented, viscid-pubescent, or villous herb, usually attains a growth of from 1 to 2 feet. Root fusiform; stem rigid. Leaves oblong, acute, the lower large, spreading upon the ground, sinuate-toothed and angled, the upper more or less amplexicaul and partly decurrent, the uppermost tending to be entire and bract-like, subtending the flowers. Inflorescence in secund, scorioid, leafy spikes; flowers numerous, sessile. Calyx large, tubular-campanulate or urceolate; border 5-cleft, spreading; teeth equal, broadly triangular, acute. Corolla oblique, funnel-form, dull yellowish, strongly reticulated with anastomosing purple veins; limb spreading, inclined to be unequally 5-lobed and plaited; lobes shallow, rounded, and more or less acute. Stamens 5, declined, all perfect, and slightly exserted; filaments inserted upon the corolla-tube near its base and continuing attached for about half their length, where they are also hairy; anthers purple, turned upon their backs, and opening by a longitudinal chink. Style filiform; stigma dilated-capitate. Capsule membranaceous, 2-celled, enclosed by the persistent calyx, which is now many-costate and reticulate-veiny; dehiscence by an apical circumsissile line, the top falling away like a lid. Seeds very numerous, roundish-oval, slightly hollowed upon each side; testa conspicuously reticulated; embryo much curved, axile; albumen copious.

History and Habitat.—Henbane is indigenous to Europe and Western Asia, from whence it was introduced into this country by the English settlers, in the seventeenth century. It grows, with us, near dwellings and settlements, from Nova Scotia and Canada, southward to the environs of New York City and Brooklyn, where it blossoms from June to August. The seeds are notably tenacious of life; hence the plant is often found in localities after having disappeared years before.†

* From, biœ, Hæra, kyor, a hogs; κυμος, kyamaw, a bean; because it does or does not poison swine—an open question.
† Dr. Bigelow says: “About ten years since (1807), a drain, which intersects the Common in Boston, was opened for the purpose of repairs. In the following season a distinct row of very luxuriant plants of Henbane covered the whole of this drain, although none of them had been observed to grow in the vicinity the preceding year. The seeds which produced these plants had probably been buried for more than fifteen years.”—Am. Med. Bot., 1, 161.
Hyoscyamus—principally *H. albus*, Linn.—was medicinal among the ancients, and the "Ὑσκειαμος μελας of Dioscorides, who rejected *H. niger* as being too highly poisonous for use. The white species is also, according to Sprengel, described by Hippocrates. Pliny speaks of Henbane, as follows:* *Moreover, unto Hercules is ascribed Henbane, which the Latins call Appollinaris; the Arabians, Altercum or Altercangenon; but the Greeks, Hyoscyamus. Many kinds there be of it, the one beareth black seed, flowers standing much upon purple, and this herbe is full of prickes; and in very truth such is the Henbane that groweth in Galatia. The common Henbane is whiter, and brancheth more than the other, taller also than the poppie. * * * All the sort of these alreadie named trouble the braine, and put men besides their right wits; besides that, they breed dizziness of the head. As touching the fourth, it carieth leaves soft, full of down, fuller and fatter than the rest: the seed also is white, and it groweth by the seaside. Physicians are not afraid to use this in their compositions, no more than that which has red seed. Howbeit, otherwiles, this white kind especially, if it bee not thoroughly ripe, prooveth to be reddish, and then it is rejected by the physicians. For, otherwise, noone of them all would be gathered, but when they bee fully drie. Henbane is of the nature of wine, and therefore offensive to the understanding, and troubleth the head. Howbeit, good use there is, both of the seed it selfe as it is in substance, and also of the oile or juice drawne out of it apart. And yet the stalk, leaves, and roots are employed in some purposes. For mine owne part, I hold it to be a dangerous medicine, and not to be used but with great heed and discretion. For this is certainly knowne, that, if one take in drinke more than four leaves thereof, it will put him beside himself. An oile (I say) is made of the seed thereof, which, if it be but dropped into the eares, is ynowe to trouble the braine. But, strange it is of this oile, that, if it be taken in drinke, it serveth as a counter poison. See how industrious men have been to prove experiments, and made no end of trying all things, insomuch as they have found meanes, and forced very poysons to be remedies." The Arabian physicians also rejected *H. niger* as a medicinal drug; but in later years it gradually took the place of the white.

In Europe, the history of Henbane is remote. It is spoken of by Benedictus Crispus (A. D. 681); Macer. Floridus (10th Cent.); in Anglo-Saxon works (11th Cent.); "Physicians of Myddvai (13th Cent.); and Arbolayre, a French herbal (15th Cent.); from which time it fell into disuse, until brought again to the notice of physicians, in 1762, by Baron Störck.†

Hyoscyamus is now quite generally used by physicians of all schools, prescribing in the so-called physiological manner, as a sedative in various affections, such as epilepsy, hysteria, mania, febris nervosa, angina pectoris, etc.; as an anodyne in rheumatism, arthritis, podagra, neuralgia, gastralgia, colica pictorum, cephalalgia, etc.; as an anti-spasmodic in asthma, croup, pertussis, phthisical coughs, and irritable conditions of such organs as are mostly supplied with involuntary muscular fibres, as the diaphragm, heart, lungs, uterus, bladder, and urethra; and as an hypnotic in all cases where opium would be used, did it not disagree. It is

* Holland's Trans., 1601, 215. (Hamilton.) † Flückiger and Hanbury, Pharmacographia, 463.
also claimed, in this connection, that Hyoscyamus rather tends to keep the bowels open, than to constipate like opium. Hyoscyamus leaves are often used as fomentations or cataplasms for painful swellings, such as irritable ulcers, indurated glands, and tumors, as well as in severe choree, orchitis, etc. The doses given, are: 10 grains of the powdered leaves; \(\frac{1}{2} \) to 10 grains of the extract; one-half to 1 drachm of the tincture; or very small doses of Hyoscyamine.

The laity have often used the smoke of the smouldering leaves in odontalgia, by directing it into the caries by means of a paper funnel; but as convulsions, delirium, and other frightening symptoms have followed in some cases, this practice is now seldom resorted to.

The following preparations and *Hyoscyami Folia*, are officinal in the U. S. Ph.: *Abscorbium Hyoscyami*; *Extrada Hyoscyami Alcoholicum* and *Fluidum*, and *Tinctura Hyoscyami*. *Hyoscyaminae Sulphas* is also recommended. In the Eclectic Dispensatory, a tincture and the two extracts are mentioned.

PART USED AND PREPARATION.—The fresh herb, gathered just before flowering, or after the seed pods are well formed and the summit of the plant is still flowering, is treated in the manner laid down for Dulcamara.* The resulting tincture has a clear brownish-orange color by transmitted light; the strong, heavy odor of the plant; an unpleasant, slightly bitter taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—*Hyoscyamine*, \(\text{C}_{18}\text{H}_{23}\text{NO}_5 \). This noted, mydriatic, highly poisonous alkaloid, was first detected by Brandes; Geiger and Hesse procured it in an impure state from the herb in 1833, but it was not isolated in a pure state until 1871, when Hohn extracted it from the seeds, which are richer in this principle than the herb. It is described as an oily liquid, concreting later into verrucose-tufted crystals, which Duquesnel has succeeded in crystallizing into stellately grouped, acicular prisms. The crystals fuse at \(90^\circ \) (194^\circ \text{ F.}), and are soluble in ether, chloroform, alcohol, and water. Hyoscyamine is decomposed by caustic alkalies; and in aqueous solution, when boiled with Baryta, it splits into the two following bodies:

Hyoscine, \(\text{C}_6\text{H}_{13}\text{N} \).—This volatile, oily liquid, of an alkaline reaction, having a narcotic odor, is now claimed, by Ladenburg, to be identical with *Tropine* (Belladonna); and that *Hyoscine* proper is a second alkaloid of Hyoscyamus, yielding different salts than either *Hyoscyamine* or *Tropine*; and

Hyoscinic Acid, \(\text{C}_6\text{H}_{10}\text{O}_4 \).—This crystalline body, melting at \(105^\circ \) (221^\circ \text{ F.}), is isomeric with *Tropic Acid* (Belladonna) and may yet be found to be identical with it.

Oil of Hyoscyamus.—This thin, inodorous, greenish-yellow liquor, is obtainable from the seeds by pressure. It has a sp. gr. of 0.913, and is soluble in 60 parts of alcohol.

* Page 124-2. † Hyoscyamia, Duboisin. ‡ Höhn and Reichardt; other authorities, \(\text{C}_{18}\text{H}_{23}\text{NO}_5 \).
Potassium Nitrate, KNO₃.—Crystals of this salt were isolated from this plant by Attfield.*

PHYSIOLOGICAL ACTION. — All parts of this plant are poisonous; the seeds, however, are the most active, the root next, and, lastly, the leaves and flowers. The effluvium arising from the cut and bruised leaves has been known to cause of itself, vertigo, stupor, and syncope.

On Animals.—Orfila states that the drug acts upon dogs much the same as upon man, producing dilation of the pupils, weakness of the posterior extremities, staggering, and insensibility. Moirond states that, given in large quantities to horses, it causes slight dilation of the pupils, spasmodic movements of the limbs, and increased heart's action. On cats it acts much the same as upon dogs. Upon gallinaceous birds it is supposed to have a baneful action; while cows, sheep, goats, rabbits, and many other animals are said to be but slightly affected.

On Man.—The action of Hyoscyamus upon man, is that of a powerful narcotic poison, a severe, cardiac, and cerebral stimulant, and tends to produce general paralysis of the nervous system. Of the delirium produced, Dr. Harley remarks—as Dioscorides had before him—that it greatly resembles that produced by alcoholic intoxication.

The symptoms in general, resulting from taking the drug, are: Lively, wild, or busy delirium, tending more to the grotesque than to the harmful type; the patient laughs, talks, gesticulates, dances, etc., and carphologia is often noticed; vertigo and confusion; eyes red, wild, and sparkling, with dilation of the pupils; insensibility of the retina, and illusions of sight; redness of the face; dryness of the mucous membranes of the mouth and fauces; paralysis of the tongue; difficult deglutition; nausea and vomiting; tympanitic distention of the abdomen; diarrhœa, and involuntary passages; paralysis of the bladder, and retention of urine; dry cough; rapid, irregular heart's action; trembling of the upper limbs, weakness of the legs; convulsions; insomnia; chill, fever, and sweat.

The following cases of poisoning by this drug, will serve to show its method of action: Nine persons, having eaten the roots of Hyoscyamus, were seized with alarming symptoms: "Some were speechless, and showed no other signs of life than by convulsions, contortions of their limbs, and the risus sardonicus; all having their eyes starting out of their heads, and their mouths drawn backwards on both sides; others had all the symptoms alike; however, five of them did open their mouths, now and then, but it was to utter howlings. The madness of all of these patients was so complete, and their agitations so violent, that, in order to give one of them an antidote, I was obliged to employ six strong men to hold him while I was getting his teeth asunder, to pour down the remedy. Upon their recovery, all objects appeared to them as scarlet, for two or three days."—(Dr. Patouillat, *Phil. Trans.*, 40, 446.)

* Pharm. Jour., 1862, 447. For authorities upon the Chemistry of Hyoscyamus, and further study, see Bibliographical Index, in the Appendix.
Seven persons ate broth, in which the leaves of Hyoscyamus had been boiled; symptoms of intoxication soon followed: "I saw them about three hours after having eat it; and then three of the men were become quite insensible, did not know their comrades, talked incoherently, and were in as high a delirium as people in the rage of a fever; all of them had low, irregular pulses, slavered, and frequently changed color; their eyes looked fiery, and they caught at whatever lay next them, calling out that it was going to fall."—(Dr. Stedman, Phil. Trans., 1750.)

Wepfer relates that several monks made a repast on the roots of wild endive (Cichorium Intibus), among which were mixed, by mistake, two roots of Henbane. In a few hours some experienced vertigo, others a burning of the tongue, lips, and throat; severe pains were also felt in the iliac regions, and in all the joints. The intellectual faculties and the organs of vision were perverted, and they gave themselves up to actions which were mad and ridiculous. In other cases, a haggard countenance, dilation of the pupils, difficulty of breathing, small and intermittent pulse, loss of speech, trismus, and temporary loss of intellect have been the principal symptoms: while the extremities have been observed to be cold and nearly paralyzed.—(Orfila 2, 135.)

A woman, æt. 34, swallowed, in mistake for a black draught, an ounce and a half of the tincture of Hyoscyamus, made apparently from the biennial plant, and resembling the pharmacopœial tincture. (The annual plant is said to make a weaker tincture.) In ten minutes she had a hot, burning, pricking sensation in the hands, feet, and legs; became giddy and delirious, and complained of great dryness in the throat. Shortly after, in attempting to get out of bed, she found her legs were powerless. A purplish rash appeared over the body, particularly about the neck and face, which were much swollen. The draught was taken at 5 A.M. At 9 A.M. Dr. White found her almost insensible and unable to speak. The tongue was swollen, brown, and dry, and put out with difficulty; the face swollen and scarlet; the pupils were so dilated that the iris was a mere thread-like ring; the skin hot and dry. The poison had been taken on an empty stomach. There was no sickness. In three hours she passed a motion smelling strongly of this drug, but the odor was not perceived in the urine. She could not see distinctly. All motion in the extremities was lost, and their sensibility was diminished. At 4 P.M. she was delirious, and there was a sickness; 11 P.M., shivering and coldness of the skin. At 9 A.M. the next day she could see and articulate better. The iris was half a line in breadth. Brandy, opium, ammonia, and other remedies were used, and she gradually improved. It was six days before she acquired a partial use of her legs, and could not then stand without being supported on both sides. She had quite lost her memory, and talked in a rambling manner. She was unable to remember for a minute a single sentence or word she had uttered or read.—(Dr. White, Lancet, July 5, 1873, p. 8.)

Two men ate the young shoots of the plant. The first effect was that the earth seemed to pass suddenly from under them; the tongue became paralyzed, and their limbs were cold, torpid, paralyzed, and insensible; the arms were in a state of spasmodic action; the pupils were dilated, the look was fixed and vacant;
breathing difficult; the pulse small and intermittent. Beside these symptoms, there was the spasmodic grin (*risus sardonicus*), with delirium; and the jaws were spasmodically closed. Under treatment the men recovered in the course of two days.—(Orfila, 4ème ed., vol. 2, p. 264.)

A woman collected in a field a quantity of the roots by mistake for parsnips. They were boiled in soup, of which nine persons in the family partook without remarking any particular taste. Very shortly afterward the whole of these persons felt uneasy, and complained of a bitter, acrid taste in the mouth, with nausea. The pupils of the eyes were dilated, and there was indistinctness of vision. These symptoms were followed by great restlessness, convulsions, and continued delirium. The patients successively lost the power of vision, hearing, and voice, and were affected with stupor and insurmountable somnolency.—(*Ed. Med. and S. J.*, Oct., 1844, p. 562.)

Post-Mortem.—Orfila quotes a case of fatal poisoning by the roots, and Wibmer one by the leaves. The appearances were those of general congestion of dark-colored liquid blood in the venous system, such condition being found in the lungs and brain. There are commonly found no traces of irritation or inflammation in the stomach or bowels.

"The differential diagnosis of the three mydriatics in the treatment of head affections is fairly stated by Dr. Phillips. In cases of cerebral hyperæmia, the severer forms are removed by Belladonna, while Hyoscyamus proves its value when there is little or no congestion, but much excitement. So in the case of delirium; the forms of this disorder, for which Hyoscyamus is adapted, are the milder and less inflammatory ones, whereas the severer cases are better dealt with by Belladonna and Stramonium. Hyoscyamus is specially useful again in those cases of delirium with hallucinations which are accompanied with little or no cerebral congestion, but where there is great excitability of the nervous system, and where there is reason to fear that the operation of opium would prove injurious."—(Hughes, *Pharmacodynamics*, p. 414.)

Description of Plate 126.

1. A flowering and fruiting branch, from near Boston, July 27th, 1884.
 2. Opened corolla.
 4. Opened calyx, showing pistil.
 5. Horizontal section of the ovary.
 6. Fruiting calyx.
 7. Fruit.
 8. Longitudinal section of fruit.
 9. Dehiscent fruit.
10. Seed.
11. Longitudinal section of seed \(\times 50 \) diameters.

(2-9 enlarged.)
STRAMONIUM.†

THORN-APPLE.

SYN.—DATURA STRAMONIUM, LINN.; STRAMONIUM SPINOSUM, GER.; S. Fœtidum, Scop.; S. Vulgatum, Gaert.

COM. NAMES.—THORN-APPLE, DEVIL’S APPLE, MAD APPLE, APPLE OF PERU, JAMESTOWN OR JIMSON WEED, STINK-WEED; (FR.) POMME ÉPINEUSE OU L’ENDORMIE; (GER.) STECKAPFEL.

A TINCTURE OF THE FRESH RIPE SEED OF DATURA STRAMONIUM, L.

Description.—This rank, glabrous, annual, bushy herb, grows to a height of from 2 to 4 feet. Root tapering, somewhat branched. Stem very smooth, subcylindrical, green and succulent, at first bifurcating, then dichotomously branching. Leaves alternate, and at times opposite, upon the same plant, in reality more or less scattered; all more or less cordate at the base, but in many instances unequal, in this case one side of the base is prolonged decurrently along the upper side of the petiole. In outline the leaves are ovate, very irregularly sinuate, and laciniately toothed or angled; they are smooth, deep green above, pale beneath, and all the older ones are plentifully perforated by the ravages of worms. Inflorescence solitary in the forks of the branches; flowers erect, 2 to 4 inches long, raised upon a short rigid peduncle. Calyx tubular, prismatic, half-persistent, circumscissile, i.e., separating transversely above the base, the upper portion falling away, the lower remaining persistent and forming in fruit a peltate border to the under side of the capsule; limb 5-toothed. Corolla infundibuliform, delicate, creamy white, convolute-plicate in aestivation; limb plaited, larger and spreading, 5-toothed; sinuses long subulate-pointed. Stamens 5, included; filaments long and filiform, inserted upon the tube of the corolla; anthers adnate, oblong and pointed. Style slender, longer than the stamens, but not exserted; stigma clavate, 2-lipped. Fruit an erect, globose-ovoid and more or less quadrilateral, divergently echinate, 2-celled pod; pericarp coriaceous; valves 4; placentæ 2, thick, projected from the axis into the middle of each cell, where each division becomes somewhat expanded into two placentiferous lines at the middle, thus rendering the pod in reality 4-celled, except at its apex. Seeds very numerous, rather large, laterally flattened horizontally, and somewhat reniform; testa crustaceous, scrobiculate-rugose; embryo much curved.

* The Arabic name Tatorah (Indian Daturah), given to D. fastuosa, Linn.
† Στρυχνομανίκα, strychnomantikos, referring to its causing madness.
History and Habitat.—Stramonium is judged by De Candolle to be indige-
nous to the Old World, probably to the borders of the Caspian Sea and the adja-
cent regions. It is one of the many Solanaceous plants whose origin is exceedingly
doubtful. This species is now only found near the habitations of man, and then
generally in garbage heaps where the soil is loose but rich, being in reality a true
weed of civilization, scattered throughout almost all of the temperate and warmer
regions of the globe. It was at one time seriously maintained that America was
its birthplace, but in no locality here does it at all approach a situation that has the
semblance of a natural site; so thoroughly does it cling to waste heaps that the
American Aborigines named it The White Man's Plant in allusion to its only
place of growth, _i. e._, near the homes of the civilized. With us in the North, it
blossoms from July to October, and ripens its capsules from September to November.

The first notice of Stramonium is, in all probability, that of Fuchsian (1542),
who states that it was introduced into Germany from Italy.* Gerarde (who
received some of the seeds from Lord Zouch, who sent them from Constantinople,
about the end of the 16th century), cultivated the plant in England.

Baron Störck was first to introduce the plant into medicine, to any extent.
He used it internally in mania and epilepsy. "If," he says, "Stramonium produces
symptoms of madness in a healthy person, would it not be desirable to make
experiments in order to discover whether this plant, by its effects on the brain in
changing the ideas and the state of the sensorium (_i. e._, of the part, whatever it
may be, which is the centre of action of the nerves upon the body)—should we
not, I say, try whether this plant would not restore to a healthy state those who
are suffering from alienation of mind? and if by the change which Stramonium
would cause in those who suffer from convulsions, by putting them into a contrary
state to that in which they were, would it not cause their cure?" Bergius states †
that he frequently saw maniacs restored to saneness of mind, which they never
afterward lost, by the continued use of the extract of Stramonium; and that by the
same means he effectually cured the delirium so often attendant upon child-birth.

In general practice Stramonium has been used as a narcotic, soothing drug,
in chorea (Wedenberg); epilepsy (Odhelius); neuralgia; and tic-douloureux;
and as an ointment, for the same purpose, in recent burns and scalds, nympho-
mania and rheumatism. One of its principal uses, however, has been that of the
dried leaves, smoked as cigarettes, during the spasm of asthma, a practice highly
recommended by Dr. Bigelow.

The official parts of this plant in the U. S. Ph., are: _Stramonii Folia_ and
Stramonii Semen; of the latter the preparations are: _Extractum Stramonii_; _
Extractum Stramonii Fluidum_, and _Tinctura Stramonii_. In the Eclectic Materia
Medica the following preparations are recommended: _Cataplasma Stramonii_; _
Extractum Stramonii Alcoholicum_; _Tinctura Stramonii_; _Unguentum Stramonii_.
The drug also plays a part in their _Tinctura Viburnii Composita_ and _Unguentum
Stramonii Compositum_. ‡

* Sprengel, _Hist. Rei. Herb._ ii, 326. † _Bull. des Plantes Vén. et Susp. de Fr._ i, 38; and _Mat. Med._ i, c.
‡ Dulcamara, _Stramonium_, Cicuta, Belladonna, Rumex, and Oleum Terebinthine.
PART USED AND PREPARATION.—The ripe seeds are powdered and covered in a well-stoppered bottle, with five parts by weight of alcohol, and allowed to stand for eight days in a dark, cool place; vigorously shaking the vial twice a day. The tincture separated from this mass by filtration is clear, and has a beautiful brownish-orange color by transmitted light. The slight odor it exhaled is not characteristic; it has no peculiar taste, but leaves a numb feeling upon the tongue very similar to that caused by carbolic acid. Its reaction is acid.

Should the bottle be left longer before filtration, the tincture will become stronger each day until it is opaque. Then in thin layers it exhibits a beautiful orange-red color by transmitted light, and when looked down upon presents a brilliant iridescent, grass-green film, which does not change during agitation, although it appears like a stratum separable from the rest of the preparation. This last preparation is, of course, unofficinal, but is mentioned simply to show that our tincture does not represent the full strength of the seed.

CHEMICAL CONSTITUENTS.—*Datura-Atropine* or *Daturine.*—This body was discovered in *Strammonium* by Geiger and Hesse in 1833. A. von Planta in 1850 proved it identical with *Atropine,* not only in solubility and fusibility, but also in its chemical composition (C_{17}H_{23}NO_{3}), and many physical properties. It differs, however, sufficiently to suggest to Herr Schmidt that we should distinguish the two products by prefixing the name of the plant from which each is derived. Lederburg † says, doubtless *Daturine,* Hyoscyamine, Atropine, and Duboisine are identical.

The following points of difference are, however, distinguishable between the two alkaloids: The crystals are said to differ somewhat in form; datura-atropine is levogyrate, while *atropa-atropine* is non-rotary; platonic chloride precipitates *atropa-atropine* salts, but not salts of datura-atropine, and picric acid precipitates datura-atropine, but not atropa-atropine; *atropa-atropine* is said to be twice as poisonous as datura-atropine; and it is claimed that datura-atropine is thrice as powerful a dilatant of the pupil as its isomer, and that the dilation lasts longer.

Atropa-atropine or *Atropine,* C_{17}H_{23}O_{3} as purified after its extraction from the flowering Belladonna, forms prisms, having a nauseous, bitter and burning taste, and causing a dryness of the mouth and fauces, with constriction of the throat. Even in very small doses it produces congestive headache and dilatation of the pupil. It is readily soluble in alcohol, less so in water; its solubility is increased in each by the addition of heat. It fuses at 90° (194° F.); and at 140° (284° F.) it breaks down, the greater portion being destroyed; by farther heating on platinum-foil it bursts into a flame, and the slight residue soon vanishes.

Stramonin.—This chemically uninvestigated body was separated from the tincture of the seeds, by Trommsdorf.†† It is described as a white, tasteless powder; sparingly soluble in alcohol, insoluble in water and fusing at 150° (302° F.).

† Erhard, 1865. †† Schroff.
Brandes, in his analysis of the seeds, extracted a fixed oil, fat oil, fatty matter, wax, resin insoluble in ether, red extractive matter, uncrystallizable sugar, gum, gummy extractive, malic acid, and various uncharacteristic bodies.

PHYSIOLOGICAL ACTION.—Datura Stramonium acts very powerfully upon the cerebro-spinal system, causing a line of symptoms showing it to be a narcot-irritant of high degree. The symptoms collated from many cases of poisoning by this drug are: Vertigo, with staggering gait, and finally unconsciousness; stupor and deep sleep, with stertorous breathing; mania, with loquaciousness or melancholia; hallucinations of terrifying aspect, the patient bites, strikes and screams, and throws the arms about, or picks and grasps at unattainable objects; congestive headaches, with dull beating and throbbing in the vertex. The pupils are dilated, and the patient suffers from photophobia, diplopia and hemeralopia; the eyes are wide open, staring, and set, or are contorted, rolling, and squinting. The face becomes red, bloated, and hot, the mouth spasmodically closed, and the tongue dry and swollen; the patient suffers greatly from thirst, but the sight of water throws him into a spasm and causes great constriction of the throat, foaming at the mouth, and other symptoms similar to those of hydrophobia. There is often nausea, but seldom vomiting. The sexual functions are often excited, more especially in women, in whom it causes nymphomania. Spasms of the muscles of the chest are of frequent occurrence; inspiration is slow and expiration quick. Paralysis of the lower limbs and loss of speech, with twitchings and jerkings of muscles often mark a case. Its action will be seen to be similar to that of Belladonna, yet differing in many respects.

A few of the many cases of poisoning by this plant will serve to show its mode of action:

Beverly states* that some of the soldiers sent to Jamestown to quell the rebellion of Bacon, gathered the young sprouts of Stramonium and ate them as a potage, "the effect of which was a very pleasant comedy, for they turned natural fools upon it for several days. One would blow up a feather in the air, another would dart straws at it with fury; another, stark naked, was sitting up in a corner like a monkey, grinning and making maws at them; a fourth would fondly kiss and paw his companions, and smile in their faces with a countenance more antic than any in a Dutch droll. A thousand simple tricks they played, and after eleven days returned to themselves again, not remembering anything that had passed." J. R. Dodge states† that "Datura meteloides grows abundantly on the Colorado River, in Arizona, and that the Mohave Indians gather the leaves and roots, bruise and mix them with water, and after being allowed to stand several hours, the liquid is drawn off. It is a highly narcotic drink, producing a stupefying effect, which is not very easy to remove. The Mohaves will often drink this nauseous liquid, as they are very fond of any kind of intoxication." The California Indians use a decoction of this species to stimulate young females in dancing. The Pah-Utes call the plant *Main-oph-weep*; they ferment in the sun a watery infusion of the

* Hist. of Virginia, 121.
bruised seeds, and drink the liquor for the purpose of intoxication.* Dr. Schlesier met a case† in which the subject, a boy, æt. 4, mistook the fruit of Stramonium for poppy heads, and ate a quantity of them. "Soon afterwards his face was flushed, his eyes were glistening and in constant motion, the pupils much dilated, and the countenance was that of an intoxicated person. He sat up in bed quite unconscious, but continually babbling and occasionally starting up suddenly, his hands apparently directed at imaginary objects in the air. His pulse was very slow; there was no fever, but intense thirst and violent perspiration from incessant motion." Dr. Turner‡ describes the effects upon two children who had eaten the seeds: "In an hour and a half they were fully under the influence of the poison. They were lying on their backs, eyes bright, pupils widely dilated and insensible to light, conjunctiva injected, faces deeply suffused, and of a dark-crimson color; difficulty of breathing, inability to articulate, and in a state of complete insensibility, broken occasionally by a paroxysm, during which they would utter some indistinct sounds and throw their hands about, as if trying to ward off some threatening evil. They then fell into a comatose state, but were easily roused into a state of violent excitement; they grasped at imaginary objects; there was picking of the bedclothes, with paroxysms of excessive laughter."

The Thugs, a society of stealthy fanatic murderers of India, often employ \textit{D. fastuosa} and \textit{alba} to render their intended victims unconscious.

On Animals.—Orfila found that half an ounce killed a dog within twenty-four hours; and a quarter of an ounce applied to an open wound in another, killed him in six hours. The symptoms in each case showed that the effects were produced upon the nervous system in general.

Post-mortem.—The blood was found to be semi-fluid throughout the body, the few coagula that are met with in the auricles and large veins are very thoroughly formed and easily broken down. A slight injection of the mucous membrane of the larynx, pharynx, and upper portion of the cesophagus was observed. The rima glottidis was thickened and very turgid. The alimentary tract, however, was found absolutely normal.§

From the symptoms caused by this drug, its homeopathic adaptability to hydrophobia will be at once evident. There is no drug so far proven that deserves as thorough and careful a trial in this dread disease as Stramonium. The following, from a letter written by the Catholic Bishop of Singapore to the \textit{Straits Times}, has just come to my notice. This bishop says he thinks it his duty to publish the remedies used in the missions in Tonquin for the cure of hydrophobia. These, he says, consist first, in giving as much star-aniseed as may be contained on a cent piece; and secondly, in making the patient take some water in which a handful of the leaves of stramon, or thorn-apple, or pear-apple, is infused. These will cause an access of the convulsions or delirium, during which the patient must be tied; but on its abatement he will be cured. If the remedy act too violently, either by

* Dr. Edward Palmer in \textit{Am. Nat.}, 1878, 650.
† Canstatt's \textit{Jahrbuch}, 1844, 297.
‡ \textit{Am. Jour. of Med. Sci.}, 1864, 552.
§ Mr. Duffin's case (his youngest daughter), \textit{Lancet}, 1845, 195.
too much being administered, or on account of there being no virus of real hydrophobia, the consequences may be ameliorated by making the patient drink an infusion of licorice root, a most precious antidote against poisoning by stramon. In 1869, the bishop relates, a very honorable member of the clergy of Paris was bitten by a pet dog, which died thirty hours afterwards with the most characterized convulsions of rabies. The following day he felt the first symptoms of the dreadful disease, and these augmented in intensity every day. The priest, however, applied at once all sorts of known remedies, ancient and modern, and even employed a very small dose of stramon. Each time he used the latter the progress of the disease ceased for some hours, even days, and then continued its ravages with greater intensity than before. When the fatal issue was at hand, just at the crisis of the disease, when the paroxysms had attained the greatest violence, the patient, with almost superhuman energy, began chewing a pinch of dried stramon leaves, swallowing the juice. The effect was not long in making itself felt. In half an hour the disease had attained its height, the patient being delirious during the convulsions; but on the following day he was perfectly cured. "The same remedy," concludes the bishop, "is used in India, and is always successful."

Description of Plate 127.

1. End of a flowering branch and portion of the main stem, Jersey City, N. J., July 10th, 1884.
2. Stamen.
3. Ovary.
4. Stigma.
5. Pollen x 200.
(2-4 enlarged.)
NICOTIANA TABACUM, Linn.
N. ORD.—SOLANACEÆ.

Tribe.—NICOTIANAE.

GENUS.—NICOTIANA,* LINN.

SEX. SYST.—PENTANDRIA MONOGYNIA.

TABACUM.

TOBACCO.†

SYN.—NICOTIANA TABACUM, LINN., NICOTIANA MACROPHYLLA, SPRENGEL, LEHM., HYOSCYAMUS PERUVIANUS, GERARD.

COM. NAMES.—TOBACCO; (FR.) TABAC; (GER.) TABAK.

A TINCTURE OF THE LEAVES OF NICOTIANA TABACUM, L. A TINCTURE OF THE ALKALOID NICOTINUM.

Description.—This largely cultivated, rank, acrid, annual herb, the base of the most wide-spread of all narcotic habits, grows to a height of from 4 to 6 feet at its flowering season. Root long, fibrous and tap-shaped. Stem erect, simple, cylindrical, solid and viscid-pubescent. Leaves alternate, bright-green upon the upper surface, paler beneath, those of the base more or less petioled, large and broad, ovate and from one and one-half to two feet long, by from 10 to 18 inches broad; those of the upper part of the plant more or less amplexant, oval-oblong or oval-lanceolate, all entire acute and glandularly pubescent. Inflorescence a terminal spreading panicle of rose colored or white flowers; bracts lanceolate, acute. Calyx inflated-tubular or campanulate, 5-cleft, viscid-hairy; teeth narrow-lanceolate, acute. Corolla; tube funnel-form, clammy-pubescent, from one and one-half to two inches long; limb salver-form, plaited, 5-cleft, the lobes acute and broadly triangular. Stamens 5, equal or nearly so; filaments inserted upon the base of the corolla and nearly as long as the tube; anthers small, opening longitudinally. Ovary ovate, 2-celled; style slender, about equal in length to the filaments; stigma capitate, 2-lobed. Fruit a 2-celled ovate capsule, situated in the cup of the persistent calyx; dehiscence septicidal from the apex; valves 2, becoming at length separated; pericarp papyraceous, thin. Seeds innumerable, minute, subcylindrical; testa sinuously, raised-reticulate.

History and Habitat.—There seems to be little doubt that tobacco is a native of some portion of South or Central America, where it appears to have been used by the natives as a narcotic from prehistoric times. The first intimation history gives of its use, is the account of the Spaniards with Columbus, who, upon landing at St. Domingo, in 1492, discovered the natives smoking cylinders of the dried leaves, which they called cohiba. In 1498 its use was again noted by them upon

* Jean Nicot, vide History and Habitat, p. 128-2.
† Origin somewhat doubtful, vide idem.
the British West Indian Island of Tobago. It was either from this island, or from
the native word meaning pipe, tobacco, that the specific name was derived. Tobacco
was quite extensively used by the Spaniards in Yucatan as early as 1520, and
from there its use was introduced into Spain by Hernandez de Toledo in 1559; about
this time also, it was first grown in Europe, at Lisbon, and from there in
1560, Jean Nicot, ambassador to France, sent seeds, mentioning them as the
germs of a medicinal plant of great value. From this circumstance Linnaeus
honored him with its generic name, Nicotiana. In 1585 its use by the Canadian
Indians was discovered, and in 1586 it was brought to England by Sir Francis
Drake and Sir Walter Raleigh and his companions. About the year 1600 the
plant was introduced into Java, Turkey, India and China, though some historians
feel confident that the Chinese had used the leaves long before this period, attempt-
ing thus to more fully substantiate the theory often promulgated that the Chinese
had visited the western shores of America long before the discovery of the eastern
coasts by the Spaniards. The rapidity with which this plant has traveled from one
extremity of the temperate and torrid zones to the other, notwithstanding the act
of English Parliament, the Popish bull, the Russian knout and death, the com-
mands of the priests and sultans of Turkey and Persia, and the edict of the
hwang-ti of China, is almost incredible, the very opposition that attended its first
introduction into all countries seemed only to urge its onward rush, until it has
gained to-day a prominence greater than any other known plant.

Besides the true Virginian tobacco (Nicotiana Tabacum, L.) for which the
genus was composed, the following species and varieties have been determined:
N. rustica, L., a species with greenish-yellow flowers, cultivated in Mexico, India,
Syria, and Turkey (Latakia), and found escaped in the northern United States;
N. Tabacum, var. undulata, Sendtner, found in Brazil; N. quadrivalvis, var. multi-
valvis, Gray, a relic of aboriginal cultivation in Oregon; N. Palmeri, an Arizo-
nian species (Palmer); N. Clevelandi, a Californian species (Cleveland); N. Plum-
baginifolia, Viv., a Mexican species (Berlandier); N. fructicosa, L., a beautiful
species with sharply pointed capsules; N. persica, Lindl., cultivated as the fragrant
Shiraz or Persian tobacco; N. repanda, Willd., furnishing the fine Havana and
Cuban leaves; N. quadrivalvis, Pursh., used by the Indians along the Missouri
river, and called by them nonchaw; N. nana, Lindl., the plant of the Rocky Moun-
tain tribes; N. chinensis, as cultivated in China and Japan; N. trigonophylla,
Dunal, N. Bigelovii, Watson, and N. attenuata, Torrey, the leaves of all of which
being used by the Indians of Utah, Arizona, New Mexico and Southern Califor-
nia, and said to be stronger than the cultivated plants (Palmer); N. lancifolia,
Willd., and N. Ybarrensis, HBK., to which Prof. Asa Gray refers the Yaqui
Tobacco, cultivated in Arizona (Palmer); and N. petiolata, a variety of cultivation
in the United States.

The tobacco plant flowers in temperate regions from June to August, varying
with the locality and season.

Tobacco can be raised in its proper soil at almost any point between the
equator and the 50th degree N. or S. latitude, the better grades however not
above the 35th degree, and the best between the 15th and 35th degrees, north.
The production of this narcotic for its specific use as before intimated is enormous, and increasing rapidly from year to year, the United States alone raising 472,061,175 lbs. in 1880, or nearly double the product for 1870. The estimated annual production of the globe is placed at about 3,000,000 tons! which, taking the world's population at present (1882) to be 1,433,887,600, would furnish each individual, without regard to age, sex, or condition, with over 4½ lbs.

As an habitual narcotic its modes of use are various. I place them here in the order of their harmfulness: Chewing without expectorating, inhalation of the smoke, chewing and expectorating, insufflation of snuff, and smoking without inhalation. The leaves are prepared for use,—after passing through processes which tend slightly to militate against the poisonous properties,—in the form of twists soaked in molasses or liquorice, for chewing, called plugs; shredded leaves more or less pure, for chewing or smoking, called fine-cut; finely-broken leaves, sometimes bleached, for smoking, termed granulated tobacco; rolled into cylindrical forms, either pure or saturated with nitre, as cigars and cheroots; rolled into small cylinders and wrapped in paper, as cigarettes; pulverized and kept dry or damp for insufflation or chewing, as snuff; and many other minor forms.

Its exhibition internally as a drug, must be conducted with the greatest care and watchfulness according to the susceptibility of the patient and the potence of the preparation. It was formerly quite esteemed as an anthelmintic, emetic, antispasmodic, cathartic, and sialagogue. Externally its forms of application were many in hemmorhoids, various skin diseases of man and beast, spasma glottidis, rheumatism, ulcers, tumors, and kindred affections.

Its official form in the U. S. Ph. is now simply Folia Tabaci; its former official preparations were dismissed at the 6th revision, 1882. In the Eclectic Materia Medica the preparations are Injusum Tabaci, Oleum Tabaci and Unguentum Tabaci.

PART USED AND PREPARATION.—The generic effects of Nicotiana being almost, if not quite identical in each species, and as the physiological effects have been gathered from all sources, varieties, and uses, the leaves of any fully-developed plant may be used. Place the dried and finely-cut leaves in a bottle, cover them with five parts by weight of alcohol, and allow them to stand at least eight days, well stoppered, in a dark, cool place. The tincture may then be pressed out and filtered. If prepared from Havana leaves, which contain the smallest percentage of nicotia, it presents a clear orange-brown color by transmitted light, the characteristic penetrating odor and taste of the plant, and only a slight acid reaction.

Nicotinum.—A Solution of one part by weight of the volatile alkaloid nicotia in 99 parts of absolute alcohol.

CHEMICAL CONSTITUENTS.—Nicotia, \(C_{10}H_{14}O_{2} \). This volatile alkaloid exists in the leaves and seeds of all species of the genus nicotiana, from which it may be extracted by aqueous or alcoholic distillation. The process best calculated to extract the full amount is Laiblin's modification of that of Schlesing.
substantially as follows: The cut leaves and stems are placed in some convenient apparatus, covered to a good depth with water, and allowed to digest 24 hours or more, then heated by means of superheated steam for half an hour, filtered and pressed. The mass is again dealt with in the same way, and the resultant liquids united and evaporated to one-third. Ten per cent. of the original weight of the tobacco of slaked caustic lime is now added, and the whole subjected to distillation by steam, until the disgusting odor of nicotia is no longer perceptible from the still. The distillate is now neutralized by a known weight of oxalic acid and evaporated to a thin syrup, the requisite amount of potassa to neutralize the known quantity of acid is now added, which causes a separation of the crude nicotia; this is collected and the menstruum treated with ether to extract the remaining alkaloid. Both resultants are now mixed, purified by distillation with hydrogen, solution in ether, shaking with powdered oxalic acid, solution again in ether, decomposing with potassa and redistillation in hydrogen. The distillate (Nicotia) is a colorless pure liquid, having a peculiar repulsive acrid odor not resembling tobacco, a burning taste, strong alkaline reaction, turning brown when exposed to light and air, and a specific gravity of 1.048 at 0° C. (32° F.). It boils at 250° C. (482° F.), is soluble to any quantity in water, alcohol or ether, and completely saturates acids.

The question as to the presence of nicotia in tobacco smoke, a point quite necessary to determine, seems still unsettled, many chemists of note having failed to detect its presence, while others find it in considerable quantity without apparent trouble. Vohl and Eulenberg (1871) conclude that nicotia is completely decomposed in the process of smoking, while Kissling (1882) in a comprehensive essay† criticises their process, and judges that their analysis was incorrect. He also criticises the analyses of Heubel, LeBon and Pease, who found nicotia, and reports its presence in his own analysis. The smoke contains, according to Vohl and Eulenberg, who have made careful analyses,† pyridine, C₆H₅N; picoline, C₆H₇N; lutidine, C₇H₇N; collidine, C₈H₁₁N; parviline, C₉H₁₃N; coridine, C₁₀H₁₅N; rubidine, C₁₁H₁₇N; and viridine, C₁₂H₁₉N; all of which are bases occurring in coal-tar, and in Dippel's oil (Oleum Animale Dippelii), a product of the dry distillation of bones and other animal matter. Besides these another hydrocarbon, C₂₈H₃₈; carbonic anhydride; hydrocyanic acid; sulphuretted hydrogen; acetic anhydride; formic, propionic, butyric, valeric and carbolic acids; creosote; several hydrocarbons of the acetylene group; ammonia; methane and carbonic oxide were found present.

Oleum Tabaci.—This empyreumatic, tarry liquid doubtless contains many of the hydrocarbons mentioned above, and mixed with nicotia is in great part that subsidence found in the smoker's pipes.

Nicotianin.—Tobacco Camphor.—C₅₀H₉₂N₂O₃. Hermbstadt (1823) observed floating separate upon the surface of an aqueous distillate of tobacco leaves, white laminae, to which he gave the above name. Nicotianin consists of white, scale-like crystals, having a bitter aromatic taste, soluble in water, alcohol and ether, and emitting a tobacco-like odor.

Nicotinic Acid.—C_6H_4N, CO.OH, was first discovered by Huber, who subsequently recognized it as carbopyriden acid. Weidel afterward separated this principle from nicotia by the use of nitric acid, and deemed his product identical with that of Huber; he gave it the formula $C_{10}H_8N_2O_3$. * Laiblin, however, (1879)† after successive tests favors the formula of Huber. This acid forms colorless, sublimable crystals, possessing a strongly acid taste.

Oil of Nicotiana Tabacum.—The fixed oil of the seeds, according to Wittstein, is golden-yellow, mild and inodorous, having a density of 0.917. A corresponding or identical oil, $C_{11}H_{22}O_2$, is found (Zeise) in Oleum Tabaci.

Tabacose.—The presence of this tobacco sugar has been determined by Prof. Attfield‡ in amounts varying in different samples, from about 5–10 per cent. The precise nature of this saccharose body is not yet known.

Besides the above the plant contains gum, mucilage, tannin, and from 15 to 30 per cent. of inorganic matters, salts of potassium, calcium and magnesium, as sulphates, phosphates, malates, nitrates and probably citrates, these latter differing in quantity according to the nature of the soil in which the individual grows, and showing it to be a very exhaustive crop.

PHYSIOLOGICAL ACTION.—The important question of whether the use of tobacco in moderation is harmful or not, has been decided in the negative by many of the highest authorities. It would seem that he who can use it at all, and who notes no symptoms from its moderate exhibition, is not particularly injured. In this as with all other drugs, it must be remembered, that what is moderation in one individual is often excess in another, and that, therefore, the dose, whether taken as a remedy or otherwise, must in all cases be suited to the particular individual under consideration. Concerning the many essays that are written upon this subject, the fact that all of them show to a careful reader whether the writer is a user or not, renders them very unsatisfactory and more or less faulty through partisanship.

Chronic effects.—It is almost an impossibility to gain a systematic knowledge of the chronic effects of tobacco poisoning, though the sources of information upon this subject would seem at first to be excellent. The effects produced upon smokers are almost useless in the study of the drug itself, and it is only in that class of chewers who swallow the juice, that positive data could be looked for; still here, as well, we are at a loss to determine facts, for in manufacturing the narcotic processes are used which alter the product greatly; nevertheless some few symptoms seem to be more or less common to all who have been for protracted periods subjected to the drug. Mental anxiety and irritability, with at times confusion of ideas; dilation of the pupils; ringing in the ears; increased secretion of saliva; uncertainty of speech; dryness of the throat; at times weakness of the stomach and nausea; increased secretion of urine; dry cough especially at night; præcordial oppression with palpitation of the heart and at times an irregular pulse; trembling of the extremities when held long in one position; general

† Ibid.
anemic condition of the blood; spasmodic contractions or jactation of single muscles; sensations of exhaustion and especially lassitude; sleepiness; profuse perspiration, and sensitiveness to cold.

It would seem to be a fact, that in habitual users of this or any other toxic drug, the drug acts more or less as its own antidote, for immediately upon discontinuance of its use the preponderance of its symptoms arise.

The effects of tobacco or its alkaloid nicotia in toxic quantities, when taken into the stomach, injected into the rectum, or applied to a denuded surface are:

Ante-mortem.—Faintness, vertigo and trembling, with extreme nausea, torpor, stertorous breathing, weak irregular pulse, relaxation of the muscles, and vomiting; followed by severe spasms or paralysis, advancing coldness of the extremities, collapse with cold sweat, and death.

Post-mortem.—Excessive cadaveric rigidity, a general contraction and congestion of all hollow organs; the heart, stomach, intestines, kidneys and bladder; a congestion of the cerebellum, liver, portal and mesenteric veins, and mucous membranes either as a whole or only in patches. The blood is found everywhere very dark and liquid.

On Animals.—Johnston states* that the Hottentots are said to kill snakes by placing a drop of the empyreumatic oil of tobacco upon their tongues. Death follows instantly as by an electric shock, or a dose of hydrocyanic acid. The action of nicotia upon small species seems to be in general almost as instantaneous as above; especially upon the *carnivora*, where its action seems more intense.

Tobacco, then, from the foregoing facts, acts as a severe irritant to the ganglionic centers, producing thence an action at first paralytic, then spasmodic, affecting the sympathetic, motor and vaso-motor systems.

Description of Plate 128.

1. Whole plant, eight times reduced, from a cultivated specimen. Chemung, N. Y., Sept. 11, 1879.
2. Flower.
3. Fruit.
4. Seed (somewhat enlarged).
5. Section of fruit.

*Chem. of Com. Life, Vol. II., p. 28.
MENYĀΝTHES TRIFOLIĀTA, Linn.
MENYANTHES.

BUCK BEAN.

SYN.—MENYANTHES TRIFOLIATA, LINN.; MENYANTHES Verna, RAF.; TRIFOLIUM PALUDOSUM, GER.; TRIFOLIUM FIBRINUM, G. PH.

COM. NAMES.—BUCK BEAN, BOG BEAN, MARSH TREFOIL, MARSH CLOVER, WATER SHAMROCK, BITTER ROOT; (FR.) MENYANTHE TREFLE, TREFLE D'EAU; (GER.) BACHSBOHNE, BITTERKLEE, FIEBERKLEE.

A TINCTURE OF THE WHOLE FRESH PLANT MENYANTHES TRIFOLIATA, LINN.

Description.—This beautiful bog perennial is characterized as follows: Root-stalk horizontal, creeping, long, thick, sub-cylindrical, and conspicuously marked by the remains of the sheaths of previous petioles; roots long, at first stout and simple, then attenuated and greatly branched. Leaves alternate, trifoliate, midribs very prominent and conspicuously pale; petioles long and thick at the base, where they are surrounded by large membranaceous sheathing bracts; leaflets oval or oblong, situated at the summit of the petiole; margins entire, or sometimes slightly crenate or obscurely serrate. Inflorescence a simple, terminal, pyramidal raceme; scape naked, arising from the axils of the previous year's leaves; bracts ovate, membranous, obtuse, shorter than the pedicels; flowers 10 to 15, white or pinkish. Calyx persistent, much shorter than the corolla; limb 5-parted, the segments oblong-obtuse. Corolla deciduous, infundibuliform; limb 5-parted, spreading, its whole upper surface densely bearded; estivation induplicate. Stamens scarcely one-half the length of the corolla; anthers oblong, sagitate. Style slender, persistent, somewhat exserted; stigma capitate, 2-lobed. Fruit a 1-celled, ovoid capsule; pericarp thin, pale brown; dehiscence irregular, but more or less loculicidal; placentae in the middle of the valves. Seeds numerous, minute; testa hard, rough, and shiny.

Gentianaceae.—A large order of smooth herbs, having a colorless, bitter juice, and scattered throughout all portions of the globe. Leaves generally opposite, sessile, and entire (Exc. Menyanthaceae); stipules wanting. Inflorescence solitary, cymose or racemose; flowers regular and showy. Calyx persistent; corolla marcescent, funnel- or salver-form. Stamens as many as the lobes of the corolla, and inserted upon its tube. Styles united or absent; stigmas 2-lobed. Ovary 1-celled

*M. month; ν. flower; * from its reputed power in promoting menstruation.
or imperfectly 2-celled; *placentae* 2, parietal, or sometimes the whole inner surface of the ovary placentiferous. *Fruit* a 2-valved capsule; *dehiscence* septicidal. *Seeds* small, anatropous; *embryo* minute, straight, and axial; *albumen* sarcous.

Besides *Menyanthes*, this order furnishes our Materia Medica three other proven species, viz.: The Chilian Centaury or Canchalagua (*Erythrea Chilensis*, Pers.); the Austrian Cross-wort (*Gentiana cruciata*, L.); and the European Yellow Gentian (*Gentiana lutea*, L.).

Many other species are used in medicine, principal among which are the following species of Gentiana, which often figure as substitutes for *G. lutea*: The North American *G. Catesbaei*, Walt.; and the European *G. amarella*, L.; *campes-tris*, L.; *purpurea*, L.; *pannonica*, Murr.; and *punctata*, L. The Indian Gentiana *Kurroo*, Royle, is used in its country in a similar manner to *G. lutea* in Europe. The North American Columbo (*Frasera Carolinensis*, Walt.) has, when fresh, properties quite similar to *G. lutea*; as have also the European Centaury (*Erythrea Centaurium*, Pers.), and Chloris *perfoliata*, L. The Indian Chiretta (*Ophelia Chirayta*, Don) is bitter, tonic, and febrifuge, and is used by English physicians in India as a substitute for Cinchona. The East Indian *Cicendia hyssopifolia*, Wright & A., is tonic and stomachic. The American Centaury (*Sabbatia angu-laris*, Pursh.) is a bitter tonic and febrifuge, often employed in remittent and intermittent fevers. The South American *Lismanthus purpurascens*, Aubl., *pendulus*, Mart., *grandiflorus*, Aubl., and *amplissimus*, Mart., are claimed to be extremely bitter tonics, esteemed as febrifuges and anthelmintics, as are also the European *Villarsia nymphaeoides*, Vent., and the Cape of Good Hope *V. ovata*, D. C. The Guianian *Coulothea spicata*, and *C. ramosa*, Aubl., are bitter tonics, much used as emmenagogues, anthelmintics, and for the removal of intestinal obstructions. *Limnanthemum Indica* is accounted a holy plant by the Chinese, in consideration of its many virtues; *L. nymphoides* is febrifugal; while the leaves of *L. pellata* are eaten in Japan as a potage.

A peculiar property pervades the whole of this natural order—the species when fresh are all emetic and cathartic, and, when dry, tonic and stomachic in varying degrees.

History and Habitat.—The Buck Bean is a native of the temperate regions of the Northern Hemisphere, from Alaska throughout the northern portions of North America, south of Greenland, Iceland, Scotland, Norway, Sweden, Russia, and eastward to the confines of Siberia. In the United States it extends southward as far as Wisconsin in the west and Pennsylvania in the east. It habits fresh-water bogs, marshes, and ditches which retain water throughout the summer season, and blossoms in May and June.

The previous uses of the dried plant in medicine were all dependent more or less upon its so-called tonic action; while in a fresh state it was used as an energetic cathartic. As early as 1613 a Swedish writer, Johannes Franckenius, states that a decoction of the herb removes all visceral obstructions, acts as an emmenagogue and diuretic, kills intestinal worms, and is an efficacious remedy in scrofula. Besides its use in amenorrhoea, *Menyanthes* was considered valuable in the treat-
ment of atonic dyspepsia, and derangements of the digestive tract, as well as a useful remedy in remittent and intermittent fevers.

Cullen speaks of the root as efficacious in obstinate cutaneous affections of a seemingly cancerous nature; Boerhaave claims to have relieved gout in his own case by drinking the juice of the plant in whey. Dr. Alston remarks "that this plant has remarkable effect in the gout in keeping off the paroxysms, though not to the patient's advantage." The general use of Menyanthes has been mostly as a substitute for gentian and columbo.

In Sweden the leaves are often used in brewing; two ounces of which are said to equal a pound of hops, for which they are substituted. Linnaeus notes that in Lapland, in times of scarcity, the dried and powdered roots have been used, mixed with meal, in bread-making; he, however, characterizes the result as "amarus et detestabilis," which one can readily imagine, as neither dryness nor heat removes the bitterness of the roots.

PART USED AND PREPARATION.—The whole fresh plant, gathered when budding to blossom, is to be chopped and pounded to a pulp, enclosed in a piece of new linen and subjected to pressure. The expressed juice is then, by brisk agitation, mingled with an equal part by weight of alcohol. This mixture should then be poured into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place. The tincture, separated from the mass by filtration, should be opaque, and in thin layers present a deep olive-green color by transmitted light. It should have a strong herbaceous odor, a lasting, extremely bitter taste, and a strong acid reaction.

CHEMICAL CONSTITUENTS.—Menyanthin, $C_{33}H_{54}O_{16}$.* This uncrystallizable glucoside is derivable from the whole plant; when pure it exists as a white, bitter powder that is freely soluble in water and alcohol, but insoluble in ether. Menyanthin softens at $60^\circ-65^\circ$ ($140^\circ-149^\circ$ F.), becomes liquid at 115° (239° F.), and carbonizes at higher temperatures.

Menyanthol, C_8H_8O.—This body, together with a brown resin and glucose, is formed by the destruction of Menyanthin with dilute sulphuric or muriatic acid. It results as an oily liquid, possessing a burning taste and a penetrating odor, similar to that of oil of bitter almonds.

Menyanthic Acid.—When Menyanthol is exposed to the air for some time it is oxidized to a white crystalline mass of unknown chemical composition, which is at present provisionally known by this name.

The analysis of Trommsdorf† resulted in the separation of albumen, resin, malic acid, "a peculiar matter precipitated by tannin," gum, inulin, and a bitter principle, which Brandes‡ succeeded in gaining as an amorphous mass of mostly yellowish-white grains (impure Menyanthin). Tilden's analysis§ corresponds with that of Trommsdorf, but does not specify the amylose body found as inulin.

† *Ann. de Chim.*, lxxii., 191.
PHYSIOLOGICAL ACTION.—Large doses of the root of this plant cause profuse vomiting and purging, together with exhausting diaphoresis. Smaller doses cause confusion and vertigo, pressive headache, dimness of vision, contraction of the pupil, twitching of the facial muscles, a sensation of coldness in the stomach and oesophagus, followed by nausea, distension and fulness of the abdomen, with griping, constipation, frequent desire to urinate with scanty discharge, oppression of the chest with increased respiration and accelerated pulse, cramps in the legs, sleeplessness, coldness of the extremities, followed by fever without thirst, and extreme weakness of the whole body.

DESCRIPTION OF PLATE 129.

1. Whole plant, Appalachin, N. Y., June 2d, 1885.
2. Flower.
3. Petal and stamen.
4. A hair of the corolla.
5. Stamen, with open anther.
6. Anther, showing under surface.
7. Pistil.
8. Stigma.
10. Seed, natural size and enlarged.
 (2-8 enlarged.)
GELSEMIUM

SEMPEVIRENS, Aiton.
N. ORD.—LOGANIACEÆ.

SEX. SYST.—PENTANDRIA DIGYNIA.

GENUS.—**GELSEMIUM**, *Juss.*

SYN.—**GELSEMIUM SEMPERVIRENS**, AIT.; **GELSEMIUM LUCIDUM**, POIR.; **GELSEMIUM NITIDUM**, MICHX.; **GELSEMIUM SEU JASMINUM LUT. ODOR. ETC.**, CATESBY; **BIGNONIA SEMPERVIRENS**, LINN.; **ANONYMOS SEMPERVIRENS**, WALT.; **LISIANTHUS SEMPERVIRENS**, MILL.

COM. NAMES.—YELLOW JESSAMINE OR JASMINE, FALSE JASMINE, WILD JESSAMINE, WOODBINE; † (FR.) JASMIN JAUNE; (GER.) GELBER JASMIN.

GELSEMIUM. †

YELLOW JESSAMINE.

A TINCTURE OF THE FRESH ROOT OF GELSEMIUM SEMPERVIRENS, AIT.

Description.—This beautiful, evergreen, woody, twining plant, often attains great heights, its growth depending somewhat upon its chosen support. *Root* long, ligneous, varying from nearly two inches in diameter to a few lines; *root-bark* of a cinnamon-brown color, and about two lines in thickness; *wood* light-yellow. *Stems* branching, at first with a more or less smooth, light slate-colored bark, then smooth and purplish. *Leaves* opposite, persistent, on short petioles; shining, lanceolate or ovate-lanceolate, bright green above and pale beneath; *stipules* inconspicuous. *Inflorescence* small axillary clusters; *flowers* sweet scented, on scaly bracted pedicels. *Calyx* small; *lobes* 5, imbricated, nearly distinct, ovate and acute. *Corolla* large, from 1 to 1½ inches long, open funnel-form; *lobes* 5, nearly equal, rounded and imbricated. *Stamens* 5, inserted on the base of the corolla-tube; *filaments* equal; *anthers* long, sagittate, adnate, and extrorse. *Ovary* elliptical, smooth, compressed, 2-celled; *ovules* several in each cell, ascending; *style* long and slender; *stigmas* 2, each bifurcated, the lobes linear and equal. *Fruit* an ovoid oblong; beaked, pendent capsule; *pericarp* papyraceous, splitting septicidally into two scaphoid valves. *Seeds* many, imbricated, light-brown, surrounded by a thin, flat, membranous border, which is prolonged at one extremity into a slightly wrinkled wing.

Loganiaceae.—This order is composed of herbs, shrubs, or trees, and forms a connective between the orders Gentianaceae, Apocynaceae, Scrophulariaceae, and Rubiaceae. Its distinguishing characteristics are: *Leaves* opposite and entire; *stipules* present or represented by a stipular line. *Flowers* regular and perfect, 4-5-merous and androus. *Ovary* free from the calyx.

The Loganiaceae of our Materia Medica are: Ignatia (*Strychnos Ignatii, *

* Gelsemino, the Italian for Jessamine.
† Not Gelsemium.
† The only woodbine in this country is *Loniceragrata, Ait.* (Caprifoliaceae).
History and Habitat.—The yellow jessamine of the southern United States grows from Virginia southward, extending into Mexico. It flowers in March and April, and some years a second time, at least I am given to understand that such is the case in the State of Georgia. Although its support somewhat regulates the extent of the growth of this climbing vine, still it extends beyond the limits of the support in such a manner as to form beautiful trails and fringes; this occurs even above trees that are over 50 feet high. The beautiful yellow flowers, the odor of which is said to be narcotic, yield a delightful perfume, which may be extracted by a process similar to that used for procuring oil of rose (Porcher).

The medical history of this plant is quite modern, having been brought into notice, according to Dr. King, by a Mississippi planter, for whom in his illness the root was gathered in mistake for that of another plant; after partaking of an infusion serious symptoms arose, so alarming in their character that his friends expected his death; upon his revival, however, it was apparent that the attack of bilious fever from which he had been suffering had disappeared. This accidental cure came to the knowledge of a pretender, who prepared a proprietary nostrum from the plant, called the "Electric Febrifuge." Dr. Porcher, of South Carolina, noting the use of gelsemium in the works of Elliott and Frost, brought it again into notice through the mediumship of a report on the medical botany of his state, made to the Am. Med. Ass'n, in 1849. The first provings were made by Dr. Henry (1852), whose work was followed by many provers, the principal among them being Dr. E. M. Hale, whose "Monograph on Gelsemium" has been a most efficient help to the true knowledge of this valuable American addition to our medicaments.

Gelsemium is official in the U. S. Ph. as Extractum Gelsemii and Tinctura Gelsemii, and in the Eclectic Materia Medica as Tinctura Gelsemini.

PART USED AND PREPARATION.—Under this rubric it should be borne in mind that "root-gatherers" often mingle with Gelsemium root that of a similar twiner growing in like manner and localities; this plant is known as White Jessamine or White Poison Vine. The following comparison will suffice to distinguish them:

<table>
<thead>
<tr>
<th>Yellow Jessamine</th>
<th>White Jessamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowers yellow.</td>
<td>Flowers dirty-white.</td>
</tr>
<tr>
<td>Stem-bark smooth and uniformly gray.</td>
<td>Stem-bark maculate and striate with white.</td>
</tr>
<tr>
<td>Tendrils wanting.</td>
<td>Tendrils present on the lower stem.</td>
</tr>
<tr>
<td>Leaves ovate-lanceolate, acute at both extremities.</td>
<td>Leaves ovate, taper-pointed, heart-shaped at the base.</td>
</tr>
<tr>
<td>Petioles (leaf-stalks) short.</td>
<td>Petioles (leaf-stalks) long.</td>
</tr>
<tr>
<td>Root fibrous, in section showing a yellowish wood.</td>
<td>Root not so fibrous, in section showing white wood.</td>
</tr>
<tr>
<td>Taste pleasantly bitter.</td>
<td>Taste bitter and nauseous.</td>
</tr>
</tbody>
</table>

PREPARATION.—Small sections of the fresh root, cut from where the whole diameter is not greater than that of a goose-quill,* are to be chopped and weighed.

* The woody portion of the root contains none of the alkaloid; this fact was determined by Eberle (1869), and corroborated by Gerrard (1883).
Then two parts by weight of alcohol are taken, the chopped root mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, allow it to stand in a well-stoppered bottle for at least eight days in a dark, cool place.

The tincture, separated from this mass by filtration, should have a clear, slightly brownish, orange color by transmitted light, an odor like that of an enraged honey bee, a pleasantly bitter taste, and a slightly acid reaction.

CHEMICAL CONSTITUENTS.—Gelsemine,\(^*\) C\(_{12}\) H\(_{14}\) NO\(_2\). This alkaloid, extracted from an alcoholic percolate of the powdered root, was determined by Kollock (1855).\(^†\) Sonnenschein (1876) gave it the formula C\(_{11}\) H\(_{19}\) NO\(_2\), but Gerrard (1883)\(^‡\) judges that the alkaloid used by him must have been impure, as his careful determinations result in the formula given above. Gelsemine, according to Gerrard and others, is a colorless, bitter, odorless, amorphous, brittle, transparent body, without definite crystals, fusing into such mass at a little below 200° C. (392° F.). It is soluble in alcohol, slightly also in boiling water, forms crystalline soluble salts with acids, and gives no color reactions with sulphuric or nitric acids.

Gelsemic Acid.\(^§\)—C\(_{30}\) H\(_{34}\) O\(_{19}\). Sonnenschein (1876) claimed that this body was identical with the glucoside \(\textasciitilde\text{aceulin,}\)\|| but Wormley (1882),\(\|$ after careful chemical and physiological analyses, determines that it is similar to, but not identical with, that body. According to the latter observer gelsemic acid is readily crystallizable into needles, but slightly soluble in water, and soluble in alcohol, ether, and chloroform. Kollock\(\^{**}\) determined, beside gelsemine, a dry and a fatty resin, volatile oil, and a yellow coloring matter.

PHYSIOLOGICAL ACTION.—Many cases of poisoning by the inadvertent use of this drug are reported, from which, together with the experiments of Wormley,\(\dagger\dagger\) we glean the following rationale of its action:

The following symptoms are entailed by doses of from one drachm to an ounce of the fluid extract: Nausea, with ineffectual attempts to vomit; dimness of vision or diplopia, especially on turning the head to one side; congestion of the face; spasms of the larynx and pharynx; restlessness; great prostration; feeble, irregular, and intermittent pulse; irregular and slow respiration with gasping; loss of muscular power, with incoördination; extremities at first hot and dry, then cold and moist; dilated pupils insensible to light; eyes fixed and protruding; inability to raise the eyelids. Death follows without previous loss of consciousness or convulsions.

Post-Mortem.—Venous congestion; collapsed lungs that are otherwise natural; the adipose tissue is found suffused with bile; blood dark, grumous, and enfilibrated; the brain and spinal cord are found pale and anæmic. By this it will be seen that there are no characteristic post-mortem appearances.

\(^*\) Gelsemina, gelsemia, gelseminia.
\(^§\) Gelseminic acid.
\(\|\) See *Aesculus Hippocastanum*, 43.
\(\$\) Ibid.
\(^\dagger\) Ibid.
\(^\dagger\dagger\) *Am. Jour. Phar.*, Jan., 1870.
Gelsemium then lowers the rate of the action of the heart and lungs, thus reducing the bodily temperature; dilates the pupil by paralyzing the motor oculi (differing here from Belladonna, which also dilates the pupil, but does so by irritating terminal filaments from the carotid and cavernous plexuses of the sympathetic system). Its action on the motor oculi causes also a loss of accommodation, and paralysis of the epicylia; this paralysis is gradually followed by a general paralytic action until the animal becomes impassive, but remains conscious until death. Gelsemium seems to act exactly opposite to Conium, the former destroying all reflex action from the centre to the periphery, the latter from the periphery to the centre. The natural antidote to this drug seems to be black coffee rather than opium; alcoholic stimulants and heat should also be plied.

Description of Plate 130.

1. End of flowering stem, Augusta, Ga., May 23d, 1883.
2. A portion of the stem.
3. Calyx and bracts (enlarged).
4. Stamens (enlarged).
5. Pistil (enlarged).
6. Section of the ovary (enlarged).
7. Fruit.

* From one of a number of living specimens, kindly sent me together with the fruit, by Miss Mary C. Cuthbert
SPIGELIA MARILANDICA, Linn.
N. ORD.—LOGANIACEÆ.

GENUS.—SPIGELIA,* LINN.
SEX SYST.—PENTANDRIA MONOGYNIA.

SPIGELIA MARILANDICA.

PINK ROOT.

SYN.—SPIGELIA MARILANDICA, LINN.; S. OPPOSITIONFOLIA, STOKES; S. AMERICANA, MONRO; LONICERA MARILANDICA, LINN.

COM. NAMES.—MARYLAND PINK ROOT, INDIAN PINK, WORM GRASS, PERENNIAL WORM GRASS, SNAKE ROOT, CAROLINA PINK ROOT, STAR BLOOM; (FR.) SPIGELIA DE MARYLAND; (GER.) NORDAMERI-
KANISCHER SPIGELIE.

A TINCTURE OF THE FRESH ROOT OF SPIGELIA MARILANDICA, LINN.

Description.—This Southern perennial herb usually grows to a height of from 1 to 2 feet. Root fibrous, twisted; stems several from the same root, simple, 4-angled and glabrous. Leaves opposite, membranaceous, ovate to ovate-lanceolate, acuminate, closely sessile by a rounded base, entire, one or two pairs of veins basal, the rest more or less pinnate; stipules small, interpetiolar. Inflorescence in a terminal, sometimes branched, unilaterial, scorpioid spike; flowers showy, erect; pedicels single or geminate; bracts minute and subulate, or wanting; peduncle short and naked. Calyx 5-parted; lobes very slender and narrow. Corolla scarlet without, yellow within, elongated-tubular, 15-nerved; tube somewhat clavate; lobes 5, ovate-lanceolate, about one-quarter the length of the tube. Stamens 5, inserted above the middle of the corolla-tube; filaments short, slightly exserted; anthers erect, linear-oblong, 2-celled at the base. Ovary superior, smooth, compressed; ovules numerous; placenta peltate, stipitate; style long, the lower portion flattened, the upper cylindrical, the two parts articulated, and the lower persistent, farther exserted than the stamens; stigma simply the somewhat inflated hairy end of the style. Capsule didymous, compressed contrary to the partitions, circumcissile above the cupule-like base, the two carpels somewhat loculicidally 2-valved. Seeds few, peltate, closely packed, and angled by mutual pressure; embryo short and straight; albumen fleshy.

History and Habitat.—This beautiful plant is indigenous to North America, where it extends from Southern New Jersey to Wisconsin, and southward to Florida and the borders of Texas; it is, however, rare north of central Virginia. It grows in rich soil on the borders of woods, and blossoms from May to July, according to its station.

* In honor of Adrian Spiegel, the probable originator of Herbaria.
Among the Aborigines, even before the discovery of America, this plant was valued as an anthelmintic; the colonists of the South received their information concerning its properties from the Cherokees, who called it *unsteetla*, and from the Osages, who used it also as a sudorific and sedative, under the name of *mikaa*. It was first introduced to the notice of physicians by Dr. Garden, who wrote several letters concerning its properties in 1763–6 to Dr. Hope. Drs. Lining and Chalmers, about this period, also contributed largely to its introduction. These physicians, and many others, have lauded the effects of the root upon lumbricoids, but all agreed that its efficacy was only certain when sufficient fresh root was taken to cause purgation; therefore, if such an effect did not take place, calomel or rhubarb were given to gain such action. This caused many others, who failed with the drug, to demean it, and search for its vaunted effects in the accessory drugs given; Spigelia, however, rose above all protests as an efficient vermifuge. Bergelius found it useful also in convulsions; and Ives and Barton considered it a valuable drug in encephalic forms of fever in children.

The root and *Extractum Spigeliae Fluidum* are official in the U. S. Ph.; and in the Eclectic Dispensatory, *Extractum Spigeliae et Senna Fluidum*, and *Infusum Spigeliae*.

PART USED AND PREPARATION.—The fresh root, gathered just before the flowers expand, is treated as directed under Gelsemium (page 130–2). The resulting tincture has a clear and beautiful reddish-orange color by transmitted light; no characteristic odor; an astringent and slightly bitter taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—Many analyses have been made of this species—none, however, that show the characteristics of the active principle. The following constituents of importance have been determined: An uncrystallizable, bitter substance, having alkaloidal characters, called by some *Spigeline*, an acrid resin, fixed and volatile oils, extractive matter, and a peculiar tannin.* The properties of the root seem to be much greater than those of the herb, and also appear to be well extracted by either water or alcohol.

PHYSIOLOGICAL ACTION.—Dr. Barton says† Pink Root induces, occasionally, violent narcotic effects, such as dimness of sight, giddiness, dilated pupils, spasmodic motions of the muscles of the eye, and even convulsions. Dr. Chalmers attributes the loss of two children by convulsions to this drug. Dr. Thompson found large doses to produce, in himself, acceleration of the pulse, flushed face, drowsiness, and stiffness of the eyelids.

Bureau‡ found that the drug acted as an acrid narcotic poison upon rabbits and other animals.

Dr. Hedge Thompson,§ above referred to, found the following symptoms to be produced upon man, after the ingestion of varying doses, all considered large:

† *Veg. Mat. Med.,* ii, 80.
‡ *De la famille des Loganiacees,* 130.
§ *Exp. dis. on the Spigelia Marilandica,* 1802.
Acceleration of the heart’s action, followed soon by a notable reduction and irregularity; nausea; inflammation of the palpebræ, followed by a sensation of stiffness therein; languor, and drowsiness.

Dr. Spalsbury* records the effects of three doses of an infusion as follows: A peculiar, wild, staring expression of the eyes, giving the countenance a very singular, in fact, ludicrous, appearance; strabismus of the right eye; great dilation of the pupils; face, especially about the eyes, including the lids, much swollen; tongue pointed and tremulous; pulse 110 and irregular; on attempting to rise a general tremor came on, which passed off in a few seconds, leaving the patient apparently quite exhausted; and the skin hot and dry. Lining states that the only muscles of the eye affected, according to his experience, were the adductors and abductors.

These symptoms point to the drug as an irritant to the inhibitory nerves, especially the thoracic plexus, and give no farther narcotic symptoms than the natural counter-effect of such irritation.

Description of Plate 131.

1. Top of plant in flower, from near Charleston, S. C., June 7th, 1886.
2. Calyx.
3. Opened corolla.
4. Stamen.
5. Section of lower portion of corolla-tube.
6. Style and stigma.
7. Section of ovary.
8. Fruit.
9. Seed.

(2–9 enlarged.)

APOCYNUM ANDROSAEMIFOLIUM. Linn.
N. ORD.—APOCYNACEÆ.
GENUS.—APOCYNUM,* TOURN.
SEX. SYST.—PENTANDRIA DIGYNIA.

APOCYNUM ANDROSÆMIFOLIUM.

DOG’S BANE.

SYN.—APOCYNUM ANDROSÆMIFOLIUM, LINN.

COM. NAMES.—DOG’S BANE, BITTER ROOT, INDIAN HEMP, MILK WEED, FLY-TRAP, HONEY BLOOM, WANDERING MILK WEED, CATCH-FLY, SPREADING DOG’S BANE, AMERICAN IPECAC, BLACK INDIAN HEMP.

TINCTURE OF THE FRESH ROOT OF APOCYNUM ANDROSÆMIFOLIUM, LINN.

Description.—This upright perennial shrub-like herb, grows from 2 to 4 feet in height, branching profusely, and emitting when wounded in any part a milky juice. The root is long, more or less cylindrical, with a diameter of from one-eighth to three-quarters of an inch, sparsely branched, and covered with a quantity of fine fibres. It is light-brown externally, wrinkled throughout its length, and transversely fissured; the bark is thin, amorphous, the wood somewhat porous, white and tasteless; the milky juice permeates its whole substance. Stem smooth, at first simple, then divergently branched, and forked. Leaves opposite, smooth and green above, paler and more or less whitish pubescent beneath; they are ovate, acute, mucronate, from 2 to 3 inches long, and about 1 inch broad. Petioles about one-quarter of an inch in length. Inflorescence upright or nodding paniculate cymes at the ends of the branches, and in the axils of the terminal leaves. Pedicels from 2 to 3 lines long, with minute subulate bracts at their bases. Calyx entirely free from the ovaries, five-parted, with ovate-lanceolate, acute lobes, much shorter than the corolla, not glandular. Corolla convolute, and sinistrally twisted in the bud, monopetalous, bell-shaped, white tinged with red, five cleft; limb spreading; lobes ovate, obtuse, reflexed, each bearing at its base a triangular nectariferous scale, free only at the tip. Stamens five, inserted at the base of the corolla, alternate with the glands; filaments distinct, very short, ligulate, pubescent inside; anthers sagittate, with an acute hyaline tip, sometimes slightly coherent, and adhering by their faces to a zone or ring at about the middle of the stigma, 2-celled, the cells opening longitudinally. Pollen granular. Ovaries 2, oblong, generally distinct, rarely united; stigma sessile or nearly

* An ancient name of the dog’s bane composed of άντρός, from άντρα, a dog; as it was thought to be poisonous to this animal.
so, ovoid, obtuse and obscurely 2-lobed. *Follices* 2, from 2 to 4 inches long, cylindrical, slender, and pendant; generally remaining united by their apices until fully ripe. *Seeds* numerous, crowned with a long silky coma at their summit. The apocynaceae are chiefly tropical, acrid, poisonous plants, represented in the gardens by the Oleander and the Periwinkle, and wild in the northern United States by *Amsonia, Forsteronia* and *Apocynum*.

History and Habitat.—This rather common plant is found from Canada to Georgia, and Missouri. It grows along fences, and over old fields, flowering in June and July, the pods forming well before the blossoms have all fallen.

The names catch-fly and fly-trap are derived from the fact that the flowers of both this and A. cannabinum have a power, without special utility, of imprisoning insects. Dr. Darwin supposed this quality to be due to an irritability of the internal organs, but upon careful observation it is plainly seen that the capture is entirely accidental, the flower and plant remaining neutral. In consequence of the convergence of the anther's and their adherence to the zone of the stigma, a narrow fissure is formed, very contracted at the apex, the insect in search of honey from the nectaries at the base of the corolla, inserts its proboscis between the short filaments of the stamens, thus when about to leave its feast the proboscis is sometimes caught in this fissure; once fast, the greater the insect struggles the more firmly is it wedged, until its self-deliverance becomes impossible. Thus mosquitos, gnats and small flies may frequently be found dead in the flower-tubes.

The only previous use of this herb is said to be that of the Indians, who employed it in syphilis. Rafinesque says: “From its stem may be obtained a thread similar to hemp, which can be woven into cloth; from its pods, cotton; from its blossoms, sugar.” The quantity of the last two articles is small, it is true, but might serve in an emergency.

This drug has been dismissed from the U. S. Ph., on account of lack of knowledge of its action. With the Eclectics it is used as *Decoctum Apocyni; Extractum Apocyni Alcoholicum*; and *Apocynin* their so-called alka-resinoid.

For obvious reasons, when desired as a tonic, diaphoretic or laxative agent, a decoction prepared as follows is the most effectual: Take a suitably sized earthen or porcelain-lined vessel and place in it one oz. of the sliced plant, roots, stems and leaves, to which add one pint of pure cold water; place the vessel in a pot of water and let it come to a boil, and remain so for at least an hour, replenishing as fast as it evaporates, with hot water, then strain the decoction from the inner vessel before it cools. It should be covered with a tight lid while heating, and after bottling should be always kept tightly corked; even then it is worthless after standing a few days. Dose, a tablespoonful three times a day.

PART USED AND PREPARATION.—The fresh root is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, and after thoroughly mixing the pulp with one-sixth part of it, the rest of the alcohol is added. After having stirred the whole, pour it into a well-stoppered bottle and
let it stand eight days in a dark, cool place. The tincture is then separated by decanting, straining and filtering.

Thus prepared, it has a light reddish-brown color by transmitted light, a very bitter taste, and a slight acid reaction to litmus.

CHEMICAL CONSTITUENTS.—Very little is known of the constitution of this plant, it not having been very thoroughly analyzed. According to Bigelow it contains:

- Red coloring matter, soluble in water, slightly soluble in alcohol.
- A bitter principle, soluble in water and alcohol.
- Volatile oil, caoutchouc and fixed oil.

PHYSIOLOGICAL ACTION.—Here also investigation has been neglected. Apocynum A. is an emetic without causing nausea, a cathartic, and quite a powerful diuretic and sudorific; it is also expectorant and considered antisyphilitic.

DESCRIPTION OF PLATE 132.

1. Part of plant, from McLean, N. Y., June 15th, 1880, showing the mode of branching.
2. End of branch in flower.
3. Follicles.
4. Seed.
5. Flower (enlarged).
Apocynum Cannabinum Linn.
APOCYNUM CANNABINUM.

CANADIAN HEMP.

SYN.—APOCYNUM CANNABINUM, LINN.; APOCYNUM HYPERICIFOLIUM, AIT.; APOCYNUM SYBERICUM, JACQ.; APOCYNUM PUBESCENS, R. BR.

COM. NAMES.—AMERICAN INDIAN HEMP,† DOG'S BANE,‡ OLD-AMY ROOT, GENERAL MARION'S WEED, SNAKES' MILK, CANADIAN HEMP, AMERICAN HEMP; †(CANADIAN) HOUATTE; (FR.) CHANVRE DU CANADA; (GER.) CANADISCHE HANF.

A TINCTURE OF THE FRESH ROOT OF APOCYNUM CANNABINUM, LINN.

Description.—This species attains a height of from 2 to 4 feet. Stem erect, glabrous, or downy pubescent; branches upright or ascending, leafy to the top. Leaves varying from nearly oval to oblong and sometimes even lanceolate; base rounded, obscurely cordate, or acute; petioles usually present, short, but sometimes wanting. Inflorescence terminal, erect, many and densely flowered, cymes, shorter than the leaves; flowers smaller than those of the preceding species. Calyx: lobes lanceolate. Corolla greenish-white; tube not longer than the calyx lobes; lobes nearly erect, not reflexed. Follicles from 3 to 5 inches long.

In this description only the more distinctive and differential points are given; the generic description is embodied in that of the preceding species. As these two plants are so often classed as one by collectors in general, and as their action is quite different, I append a differentiation:

A. androsamifolium.

1. Stem divergently branching or bifurcating.
2. Root: bark dark brown; wood white, tenacious, fibrous; pith of about the diameter of the thickness of the bark, sometimes greater.‡
3. Leaves ovate, distinctly petioloed; those at the bases of the branches like those upon them—i. e., an opposite, petioloed pair.|| (Plate 132, Fig. 1.)
Inflorescence loose, spreading cymes; flowers greenish-white, with rose-colored maculations or strig, or full pale rose-color; ♀ corolla: tube longer than the calyx lobes; lobes reflexed or spreading.

A. cannabinum.

1. Stem assurgently branching, not bifurcating.
2. Root: bark grayish-brown; wood yellowish, soft, porous; pith minute or not evident.‡
3. Leaves ranging from ovate to nearly lanceolate, sometimes sessile or nearly so; those at the bases of the branches single, sessile, and larger.|| (Plate 133, Fig. 2.)
Inflorescence close, erect cymes; flowers greenish-white, smaller; corolla: tube not longer than the calyx lobes; lobes erect.

* This plant is often termed Indian hemp, a name only applicable to Cannabis Indica, as it designates that plant alone. American Indian hemp might possibly apply, if we consider the first two words a compound word, and write it American-Indian hemp.
† Dog's-bane as properly belongs to A. androsamifolium, as Canadian hemp does to this species.
‡ American hemp and American Indian hemp (so written) refer to Cannabis Indica as cultivated in America.
|| A purely distinctive point, no mention of which appears in any of the works I have examined.
¶ The author regrets that a misinterpretation occurred, causing the lithographer to alter his originally rose-colored flowers to green in Fig. 2, Plate 132.
Apocynaceae.—This family of chiefly tropical plants of poisonous nature, has the following characteristics: Trees, woody shrubs, or herbs, exuding when wounded, a milky, acrid juice. *Leaves* entire, feather-veined, arranged alternately, oppositely, or in whorls; *stipules* wanting. *Inflorescence* terminal or axillary cymes, or panicles; *flowers* 5-merous and 5-androus, perfect and regular. *Calyx* free from the ovary, persistent. *Corolla* gamopetalous; lobes convolute or twisted in the bud. *Stamens* equal in number to the corolla lobes and alternate with them; *anthers* distinct or nearly so, encircling the stigma and sometimes adhering to it, 2-celled, introrsely and longitudinally splitting; *filaments* distinct, inserted upon the tube of the corolla; *pollen* of loose grains, sometimes glutinous. *Ovaries* 2, united or distinct, biplacentiferous; *ovules* numerous or few, anatropous or amphitropous; *style* single, common to both ovaries; *stigma* single, capitate, the receptive surface consisting of a ring encircling the under surface of the stigma. *Carpels* 2, distinct or united; *seeds* numerous, comose or aecomose; *albumen* sparse; *embryo* straight and comparatively large.

This family contains in North America 9 genera, 21 species, and 2 varieties. Beside the two under consideration, the following species have a place in the Homoeopathic Materia Medica: Dita bark (*Alstonia scholaris*); Oleander (*Nerium oleander*); Tanghinia (*Tanghinia Madagascariensis*, Pet. Th.; *T. venenifera*, Poir; *Cerbera tanghina*, Hook.); the Antillesian Ahovai-baum (*Thevetia nereifolia*, Juss.; *Cerbera thevetia*, Linn.); Toxicophloea (*Toxicophloea Thunbergi*); Upas (*Strychnos tieute*); Periwinkle (*Vinca minor*, Linn.); and Echites (*Echites subereeta*, Jacq.).

History and Habitat.—The habitat of both indigenous species is generally given as the same—i. e., sandy soils and the borders of old fields and open woods. I have noticed that *A. androsæmifolium* answers well to this habitat, but that *A. cannabinum* is found much more abundant in marshy places and on the banks of rivers, particularly where they are subjected to submergence during high water. Their geographical range is: from the Canadas southward to Georgia and Florida, and westward to California. *A. cannabinum* extending the farther south of the two. The two species blossom together in June and July, fruiting as they flower.

This species yields the better and tougher "hemp" of the two, and is more utilized. Porcher quotes* the *Rural Cyc.* as follows:

"This plant has been proved by Prof. Thouin, of Paris, to possess a stronger fibre than that of hemp; and is used by the American Indians for making cordage, fishing-nets, and coarse cloth." He further states: "The decoction affords a permanent dye, brown or black, according to the mordant used."

In general and domestic practice this species has been used and lauded as an excellent diuretic,† also as an hydragogue cathartic, emetic, and diaphoretic, in proper relative dosage.

The root is official in the U. S. Ph. In the Eclectic Materia Medica the preparation is: *Tinctura Apocyni*.

* Resources of the Southern Fields and Forests, p. 484.
† See page 132-2, concerning decoction.
PART USED AND PREPARATION.—The preparation is made from the root in the same manner as that of the preceding species. The resulting tincture has a deep reddish-orange color by transmitted light, a rank odor, an extremely bitter and penetrating taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—Apocynin. This partly crystalline, bitter principle has been isolated by both Dr. Knapp and Dr. Griscom; its chemical nature has not yet been determined. It is not a glucoside, but for the present is supposed to hold a place in close relation to that class of bodies. It is insoluble, or only slightly soluble, in water.

Apocynein.—This amorphous glucoside greatly resembles saponin in its physical properties.* It is fully soluble in water. Its chemical nature is only slightly known.

Beside the two bitter principles, Dr. Griscom (1832) found in the root, tannic and gallic acids, gum, resin and wax.

PHYSIOLOGICAL ACTION.—Apocynum cannabinum has long been noted for its hydragogue properties, the results obtaining in this direction through its peculiar action upon the mucous membranes of the intestinal canal. What its action may be upon serous membranes is still to be determined. Its action in causing diuresis and diaphoresis (the latter only present when it causes emesis), is another point in the dark, concerning which more light is greatly to be desired. When nausea and vomiting occur, the action of the heart is greatly diminished, and a sense of mental depression and oppression of the chest almost naturally result. Apocynum apparently acts simply as an evacuant, and affects the organic trouble causing the dropsical condition for which it is usually given, little, or not at all.

DESCRIPTION OF PLATE 133.

1. End of fruiting and flowering branch, Binghamton, N. Y., July 22d, 1882.
2. Part of stem, showing mode of branching.
3. Flower (enlarged).
4. Flower after removal of the perianth (enlarged).
5. Flower after removal of the stamens (enlarged).
6. Side view of stamen (enlarged).
7. Seed.
8. Section of the root.

ASCLEPIAS CORNUTI, Decaisne.
N. ORD.—ASCLEPIADACEÆ.

Tribe.—ASCLEPIADEÆ.

GENUS.—ASCLEPIAS,* L.

SEX. SYST.—PENTANDRIA, DIGYNIA.

ASCLEPIAS CORNUTI.

COMMON MILKWEED.

SYN.—ASCLEPIAS SYRIACA,+ LINN. A. CORNUTI, DEC.

COM. NAMES.—COMMON MILKWEED, SILKWEED, WILD COTTON, VIRGINIAN SWALLOW-WORT; (FR.), ASCLEPIADE À LA SOIE, HERBE À LA OUATE; (GER.), SCHWALBENWURZEL, SEIDEN-PFLANZE.

A TINCTURE OF THE FRESH ROOT OF ASCLEPIAS CORNUTI, DEC.

Description.—This stout, upright, perennial herb, grows from 4–5 feet high, is leafy to the top, and bears superior lateral as well as terminal umbels of dusky red flowers.

The root extends horizontally to a length of from 1–2 feet, is externally of a grayish-brown color, somewhat branched, and from one-quarter to one inch thick, giving off a few scattered rootlets, or is marked by their scars; it is often knotty from branches that have failed to develop. It has no specific odor, but is decidedly bitter to the taste. It breaks with a short fracture when dry, disclosing a soft, porous, yellow-tinged wood, with broad medullary rays and a thin white bark. The stem is simple, or nearly so, cylindrical, stout and smooth, emitting when wounded a copious, white, mucilaginous juice which soon congeals. The leaves are about 4–8 inches in length, oppositely arranged upon the stem, oval-oblong, entire, slightly pointed and short petioled; they are of a dark rich green color above, pale and minutely downy beneath. Inflorescence, many-flowered umbels, upon long, drooping, downy peduncles, from the base of the petioles of the upper leaves. The calyx and corolla are deeply 5-parted, reflexed, and spreading, the former persistent, the latter deciduous. The crown consists of 5 hooded, fleshy bodies (termed nectaries by Linnaeus), situated upon the stamen tube, each containing an incurved horn. Specifically these hoods are ovate, obtuse, having a tooth or lobe upon each side of the horn, which is short and claw-like. Stamens 5, inserted upon the base of the corolla; filaments united into a tube inclosing the pistil; anthers adherent to the stigma (forming a distinguishing feature of this large order of plants, of which Asclepias is the type); they are composed of two vertical cells, tipped with a membrane-like appendage, each containing a flattened, pear-shaped, waxy, pollen-mass. Ovaries 2, tapering into two

* The Greek name of Aesculapius, to whom it is dedicated.
† Syria; but as this is a purely American species, we should use the name by Decaisne.
very short *styles*, surmounted at their apices by a large, depressed, 5-angled, fleshy mass, which takes the place of a *stigma* common to the two, having five cloven glands upon its angles. *Pollen-masses* of adjacent anther-cells, extricated by the agency of insects, form pairs, which hang by a fine prolongation of their summits from the glands of the stigmatose body, ejecting copious pollen-tubes into its junction with the *styles*. *Follicles 2*, one of them often abortive, ovate, soft, woolly, and covered with weak spines. *Seeds* anatropous, margined, flat, furnished with long silky hairs at the hilum; all imbricated downward over the large placenta, which separates from the raphe when mature. *Embryo* large, the thin albumen containing broad leaf-like cotyledons.

History and Habitat.—This very common herb grows in rich or sandy ground, along roadsides and in waste places everywhere in Canada and the United States, flowering during the summer months. Few genera are more beautiful or complex in their structure than this, still the plants of this order are so peculiar that even the youngest student of botany will recognize them at a glance. That they are so plentiful cannot appear strange after an examination of the seeds, whose silky coma when expanded forms them into veritable parachutes; balanced by the pendant seeds, they mount gracefully to immense heights, whence they are wafted far and wide by the lightest zephyr until, dampened by dew or rain, they fall to the ground. The young sprouts, just as they appear above the ground in spring, are highly esteemed among housewives as a pot-herb, being cooked similarly to asparagus, for which they are an excellent substitute. The juice when applied to the skin forms a tough, adhesive pellicle; this has led to its use by the laity as a covering for ulcers and recent wounds to promote cicatrization. In a memoir on the cultivation of this plant, by J. A. Moller, in Tilloc'h's Magazine, vol. viii, p. 149, may be found the following: "Its chief uses were for beds, cloth, "hats, and paper. It was found that from eight to nine pounds of the coma of the "seeds occupied a space of from five to six cubic feet, and were sufficient for a bed, "coverlet, and pillows. The shortness of the fibre prevented it from being spun "and woven alone, it however was mixed with flax, wool, etc., in certain stuffs to "advantage. Hats made with it were very light and soft. The stalks afforded "paper in every respect resembling that obtained from rags. The plant is easily "propagated by seeds or slips. A plantation containing thirty thousand plants "yielded from six to eight hundred pounds of coma."

This plant, together with many other excellent drugs, has been dismissed *sine cura* from the U. S. Ph. The Eclectic Dispensatory recommends its use in a fluid extract, dose from 10 drops to a fluidrachm; in amenorrhoea, dropsy, retention of urine, asthma, dyspepsia, cough, dyspepsia, etc.

The use of the Asclepiadæ in general in pleurisy is not well proven, though their action upon the nerves might lead to empirical use in pleurodynia.

PART USED AND PREPARATION.—The fresh root, already described, is gathered when in full vigor, chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, and after thoroughly mixing this pulp with one-sixth part of it, the rest of the alcohol is added. After having stirred the
whole, pour it into a well-stoppered bottle and let it stand eight days in a dark cool place. The tincture is then separated by decanting, straining, and filtering.

Thus prepared it has a light orange-yellow color by transmitted light, a bitter and slightly astringent taste, quite similar to half ripe butternuts, and a slightly acid reaction.

CHEMICAL CONSTITUENTS.—Asclepione,* C_{20} H_{34} O_{8}. This resinoid principle was determined by List in the juice of the plant; also by W. L. Hinchman (Am. Jour. Phar. 1881, p. 433) in the roots; as white, verrucose, odorless, tasteless, iridescent crystals; decomposing at 194° (219.2° F.) and volatilizing at higher temperatures. They are soluble in chloroform, ether and alcohol; insoluble in water. The roots, according to the latter authority, contain asclepione, caoutchouc, fixed oil, tannin, glucose, a bitter principle not isolated, gum, starch, and volatile oil. The milky juice of the whole plant contains the same bodies found in the root. The acid of the plant seems to be in close relation with the undetermined bitter principle.

PHYSIOLOGICAL ACTION.—A. cornuti is diuretic (increasing the solid constituents as well as the watery portion of the urine) and diaphoretic, not by stimulating but by lowering the action of the heart. It is thought to act directly upon the vaso-motor system, often in this sphere lessening local congestions. Its minute action can best be studied in the published provings. Anodyne properties have been attributed to this drug, but this is totally unsupported at present.

DESCRIPTION OF PLATE 134.

1. Upper part of plant, from Bingham's, N. Y., June 21st, 1880.
2. A cluster of follicles.
3. A flower (enlarged).
4. Seed (somewhat enlarged).

* There seems to be a similarity between this body and Lactucerin, vide, 96.
ASCLEPIAS TUBEROSA, Linn.
ASCLEPIAS TUBEROSA.*

PLEURISY-ROOT.

SYN.—ASCLEPIAS TUBEROSA, LINN.; ASCLEPIAS CAULE ERRECT. DIVAR. VILLOS., ETC., HORT. CLIFF.; APOCYNUM NOVÆ ANG. HIRsut. ETC., HERM. LUGDB.

COM. NAMES.—PLEURISY-ROOT, BUTTERFLY WEED, ORANGE SWALLOW-WORT, ORANGE MILK-WEED, ORANGE APOCYNUM, WIND ROOT, WIND WEED, COLIC ROOT, WHITE ROOT; (FR.) ASCLEPIADE TUBEREUSE; (GER.) KNOLLIGE SCHWALBENWURZ.

A TINCTURE OF THE FRESH ROOT OF ASCLEPIAS TUBEROSA, LINN.

Description.—This attractive plant grows to a height of from 1 to 2 feet. Root large, sarcous, fusiform and branching. Stems numerous, erect or oblique, roughish hairy, branching superiorly, and leafy to the top; they form an exception to Asclepiadæ in general by being almost or entirely devoid of milky juice. Leaves numerous, scattered, some falling opposite; they may vary from linear to linear- or oblong-lanceolate, be sessile or very short petioled, hisrute, mostly acute or subacute, and undulate wrinkled along the margin. Inflorescence terminal cymose or corymbose clusters of short peduncled umbels; flowers showy, greenish- or orange-chrome. Calyx much smaller than the corolla; sepals reflexed, subulate, hidden under the lobes of the corolla. Petals or divisions of the corolla oblong, at first extended then reflexed. Crown elevated conspicuously above the base of the corolla; hoods or cuculli erect, narrowly oblong, sessile, somewhat broadened at the base, and about twice the length of the column; horns subulate, slender, nearly erect. Column short. Anthers shorter than the cuculli; wings truncate, broadest at the base. Pods lanceolate, acuminate, hoary.

Asclepiadaceæ.—This large family differs mainly from the preceding, and all Exogens, in the arrangement of the essential organs and fecundating element. It consists of shrubs and herbs having acrid, bitter, milky (exc. Asclepias tuberosa) juice, containing caoutchouc. It answers in general to the characters of leaf, flower, and fruit exhibited in the Apocynaceæ (vide ante, p. 133–2).

Leaves destitute of stipules; their place generally supplied by hairs. Inflorescence terminal, axillary or somewhat racemose clusters of cymose or umbelli-

* In executing this plate with the stem and leaves natural size, it became necessary to remove two flower clusters, which greatly diminishes its value to the botanist, though the representation is still characteristic of A. tuberosa.
form flowers; *bracts* minute. *Corona* consisting of 5 parts or lobes (hoods), usually present and situated between the corolla and the stamens, adnate to the one or the other. *Disk* (hypogynous) wanting; *stamens* mostly monadelphous, their tube forming the *column*; *anthers* introrse, 2- or incompletely 4-celled, in Asclepias flattened, opening lengthwise (c. Fig. 6), and surmounted by a small membranous appendage (d. Fig. 6). *Styles* 2, generally distinct as far as the stigmatic body; *stigma* or *stigmatose disk* fleshy, consisting of a central portion or body common to both styles, from which are produced 5 corpuscles or glands, alternate with the anthers (e. Fig. 6). *Pollinia* (Fig. 4) waxy masses of coherent, granular, compressed hexagonal, pollen cells. Each of the masses is furnished with a fine prolongation, these meet in pairs, the point of juncture being tipped with a minute, black, coriaceous appendage, sharply cleft at its inferior edge, the sides prolonging like the bars of an arrowhead; this appendage is situated between the apices of two contiguous anthers, and is connected with the stigmatic glands. Thus when the pollen is withdrawn two anthers yield a cell's contents each to the mass. *Fruit* pair of follicles except when aborted; *seeds* few or many, compressed, imbricate, generally margined, and furnished with a soft coma; *embryo* straight; *cotyledons* foliaceous; *albumen* thin. A general description of Asclepias is incorporated in that of A. cornutum, 134.

A word in regard to cross-fertilization in Asclepias. While drawing figure 2, plate 135, holding the flower by its peduncle, a large blue-bottle fly alighted upon the crown, as he did so one of his legs slipped down between two hoods,—which neatly curve to such a shape that the foot of an insect is guided directly into the crevice between two adjacent anther cells—and upon attempting to withdraw it he was unable to do so. Noting this, I teased him into many strong tugs and pulls, but the more he struggled the tighter his foot became wedged, until finally after about ten minutes' hard work he flew off with a little yellow spot attached to the extremity. I caught him, plucked off the leg, and examined it under a lens; the claws were firmly wedged into the little cleft, before mentioned as existing in the coriaceous appendage of the pollen-masses. I afterward examined numerous heads of *Asclepias cornutum*, nearly always finding many captive insects, especially *Musca*, some dead and others struggling; and watched many more fly off with the fecundating element trailing after them. Others, too, arrived with pollen-masses, and by the same interesting procedure as described, left their burdens in the crown, thus executing without design the will of Nature.

The plants of this order that are of particular interest to us, beside the two under consideration, are: Cundurango (*Gonolobus Cundurango*), the Spanish Mata-perro (the plant that—being announced and lauded as a cure for cancer—caused such a furor in medical and general circles in 1871; now considered worthless in cancer or any other disorder by those who were foremost in its advancement and use); and the curled-flowered Calatropis (*Calatropis gigantea*), a native of the East Indies. The other prominent medicines in this order are: The Indian emetic *Secamone emetica*, and purgative *S. Thunbergii*. The acrid juice of Syrian Peri-

* Crown, nectary, lepanthium.
Periploca (Periploca Graeca) has been used as a stimulating application for ulcers, and in Greece as a wolf poison. Lindley states* that the East Indian Tylophora asthmatica is either emetic or purgative in the proper dosage, and constitutes a valuable Indian remedy. Many species of Gonolobus act as drastic purges, and some are used by the Aborigines as arrow poisons. The Ceylon Indian or Country Sarsaparilla, Hemidesmus Indicus, is spoken of by Lindley† as being quite as efficient in its usage as the American root, and adds: "A great deal of it is consumed in London and considered a fine sort." The genus Cynanchum affords several purgatives, one of which, the Syrian Cynanchum erectum (Marsdenia erecta), is stated to be very poisonous, and used by the natives as a means of murder or suicide; Argel (Cynanchum Argel) is often used to adulterate Alexandrian Senna, and to this Lindley ascribes the griping and other unpleasant effects of the commercial Senna; while the leaves of the East Indian Cynanchum extensum (Daemia extensa) are employed as an anthelmintic, and the juice in asthma. Thus throughout the order almost all species are used in the practice of their native countries; while to the arts some yield excellent fiber for the manufacture of rope, and others (especially Cynanchum ovalifolium), caoutchouc in good quantity and of fine quality.

History and Habitat.—Asclepias tuberosa is common from Canada southward; growing at first near the coast on sandy fields, but spreading inland as the soil grows drier and less rich. It flowers northward during the earlier months of summer, and fruits in September. The procumbent form, more common southward, formerly classed with this species, is now recognized as var. decumbens, Pursh. The Western Indians boil the tubers for food; prepare a crude sugar from the flowers, and eat the young seed-pods after boiling them with buffalo meat. Some of the Canadian tribes use the young shoots as a pot-herb after the manner of asparagus;‡

The pleurisy-root has received more attention as a medicine than any other species of this genus, having been regarded, almost since the discovery of this country, as subtonic, diaphoretic, alterative, expectorant, diuretic, laxative, escharotic, carminative, anti-spasmodic, anti-pleuritic, stomachic, astringent, anti-rheumatic, anti-syphilitic, and what not? It has been recommended in low typhoid states, pneumonia, catarrh, bronchitis, pleurisy, dyspepsia, indigestion, dysentery, helminthiasis, and obstinate eczemas, in doses of from 20 to 40 grains of the powdered root.

Schoepf first brought it before the medical profession, followed by Drs. Barton, Chapman, Eberle, and Parker, each of whom found it often reliable, especially in cases where an expectorant or diaphoretic seemed requisite. In colic and rheumatic pains its exhibition met with much success. Dr. Chapman states§ that it is distinguished by great certainty and permanency of operation, and is well suited to excite perspiration, etc. Prof. Barton esteemed it as one of the most important of our indigenous remedies. Dr. Benj. Parker says:|| "The powdered root frequently acts as a mild purgative, but it is particularly valuable for its virtues as an

expectorant, diaphoretic, and febrifuge." "From the successful employment of the pleurisy-root for twenty-five years, he has imbibed such confidence that he ex-
tols it as possessing the peculiar and almost specific quality of acting on the organs
of respiration, powerfully promoting suppressed expectoration, and thereby re-
lieving the breathing of pleuritic patients in the most advanced stage of the dis-
ease; and in pneumonic fevers, recent colds, catarrhs, and diseases of the breast
in general, this remedy has in his hands proved equally efficacious." Dr. Griffith
concludes* that "from all that can be gathered on the subject, it may be deemed
one of the most useful of our native articles, and deserves a full and unbiassed
trial." Other and more recent writers as usual have looked with doubt upon all
its given qualities, except mayhap its utility as an expectorant and diaphoretic.
The provings, however, point to it as a valuable remedy in certain forms of dry
coryza, indigestion, colic, diarrhoea, dry coughs, pleurisy, general rheumatic pains,
and certain skin affections. In one case only in my own practice have I seen the
indications for its use, that a case of chronic indigestion, accompanied by dry cough
and intercostal rheumatic pains; it acted promptly and efficaciously, bringing relief
within a few hours, and immunity of the disorder within a month.

The root is officinal in the U. S. Ph. Its preparations in the Eclectic Materia
Medica are: Extractum Asclepidis Alcoholicum, and Fluidum; Infusum Asclepi-
dis; Pulvis Asclepiae Compositus;† Pulvis Ipecacuanhae Compositus;‡ Tinctura
Lobeliei Composita;§ and Asclepidin or Oleo-Resina Asclepidis.

PART USED AND PREPARATION.—The tincture is prepared from the fresh
root in the same manner as that of the preceding species. It has a brownish-
orange color by transmitted light, darker therefore than that of A. coru
a slightly bitter taste; preserves the characteristic odor of the root, and has a de-
cided acid reaction.

CHEMICAL CONSTITUENTS.—An analysis of the root by Alton Clabaugh||
resulted in the separation of a fixed oil saponifiable by caustic alkalies; a pecu-
lar odorous, crystalline, sublimable stearopten melting at 160° F., and soluble in
alcohol, ether, and chloroform; a bitter principle insoluble in alcohol; another
yellowish-brown bitter principle soluble in alcohol; a yellowish-white body pos-
sessing the taste of the drug, soluble in alcohol; together with starch, gummy and
coloring matters, and a resin, thus corroborating the former analysis of Elam
Rhodes.

PHYSIOLOGICAL ACTION.—The following symptoms occurring after taking
doses of from 20 to 50 drops of the tincture, are recorded by Thos. Nichol.¶
Deficient appetite, with pain and weight in the pit of the stomach; soreness and
colic, followed by flatulence; soft febrid stools, preceded by rumbling in the bowels;
dry, hard, hacking cough, with painful respiration; sharp, shooting pains, espe-

‡ Pleurisy-root, Ipecacuanha, Blood Root, and Nitrate of Potassa. § See foot-note to Lobelia inflata, 99.
cially between the ribs and about the heart, aggravated by deep inspiration and by motion of the arms; darting, shooting pains in the extremities, followed by a sense of languor and debility.

From this it is evident that *A. tuberosa* has a decided action upon the body, especially the mucous membranes of the alimentary tract. Just what this action is, is as yet undeterminable.

Description of Plate 135.

1. End of flowering plant with two clusters removed, Jamaica, L. I., July 17th, 1884.
2. Flower, somewhat enlarged.
3. Hood and horn (enlarged).
4. Pollen-masses, showing connective (x 25).
5. Stigmatic body (enlarged).
6. A portion of the column, showing:
 a. The connective of the pollen-masses.
 b. Cleft between the anther cells.
 c. Anther.
 d. Membranous appendage.
 e. Stigmatic lobe.
Chionanthus Virginica, Linn.
N. ORD.—OLEACEÆ.
Tribe.—OLEINEÆ.
GENUS.—CHIONANTHUS,* LNN.
SEX. SYST.—DECANDRIA MONOGYNIA.

CHIONANTHUS.

FRINGE TREE.

SYN.—CHIONANTHUS VIRGINICA, LNN.
COM. NAMES.—FRINGE TREE, SNOW FLOWER, POISON ASH, OLD MAN’S BEARD, SNOWDROP TREE; (FR.) CHIONANTHE; (GER.) SCHNEEBAUM, ODER SCHNEEBLUME.

A TINCTURE OF THE FRESH BARK OF CHIONANTHUS VIRGINICA, LNN.

Description.—This beautiful southern shrub grows to a height of from 6 to 10 feet, and may be characterized as follows: Leaves smooth or downy-pubescent, oblong- or ovate-lanceolate, and narrowed into a petiole; margin entire. Inflorescence loose, axillary, leafy-bracted panicles, appearing with the leaves, than which they are longer; flowers delicate, more or less arranged in threes, each on a drooping pedicel. Calyx small, 4-cleft, persistent; lobes linear-lanceolate. Corolla wheel-shaped, 4-cleft; lobes long, linear, and almost separate. Stamens 2, included, inserted just at the base of the corolla; anthers larger than the young pistil, 2-celled; filaments no longer than the anthers. Style short; stigma 4-notched. Fruit an ovoid, blackish, fleshy drupe, covered by a delicate bloom; seeds 1 to 3.

Oleaceæ.—A small family of trees or shrubs, represented in North America by 6 genera, 29 species, and 7 varieties. Leaves opposite, simple or pinnate, extipulate, deciduous. Flowers perfect, polygamous or diecious. Calyx 4-toothed, sometimes obsolete. Corolla 4-lobed or petaled, sometimes wanting; aestivation valvate. Stamens 2 or abnormally more. Ovary 2-celled, with 2 suspended ovules in each cell; style single or none. Fruit a 1–2 seeded samara, berry, or drupe. Embryo straight; albumen hard, sometimes wanting.

The only proven plant in this order, beside those here considered, is the White Jessamine (Jasminum officinale, Linn.), the authority for the use of which I am unable to determine. Prominent in this order stands the Levantine and South European Olive (Olea Europaea, Linn.), which yields, beside its valuable fruit and oil, a bark that is highly spoken of by De Candolle as a substitute for

* χιόν, chion, snow; ἄνθος, anthos, flower.
Cinchona, and a gummy substance much esteemed as a vulnerary. The South European Flowering Ash (Fraxinus Ornus, Linn.) exudes from its branches a dulcamarous substance called Manna, a gentle laxative, useful in cases of genito-urinary affections attended by constipation; it has, however, the usual drawback of causing flatulent colic.* Calabrian manna, considered by Fothergill to be of even better quality than the last, is a product of F. excelsior, Linn.; F. rotundifolia is also manniferous. The fruit of the Persian Lilac (Syringia vulgaris, Linn.†) is, according to Curveiller, a remarkably good tonic and febrifuge when extracted.

The leaves of the South European Phillyrea latifolia have been found to relieve headache, when soaked in vinegar and applied with a compress; the leaves of the British Privet (Ligustrum vulgare) are often used in the same manner; both are astringents.

History and Habitat.—The Fringe Tree is indigenous to the United States, where it ranges from the southern portions of Pennsylvania southward to Florida and Texas. It habits rich woods along the borders of streams, flowering in June.

The previous use of the bark of this shrub as an astringent vulnerary, and the bark of the root as a tonic after long and exhaustive diseases, is one that has a great merit. The bark in infusion is a remedy that was too often neglected for foreign drugs in the treatment of typhoid forms of fever and intermittents, especially those of bilious character. This bark has often also proved itself a trustworthy diuretic, and Prof. Griffith deems it possessed of acro-narcotic properties. Rafinesque claims that the root makes a cataplasm that will cause the healing of wounds without suppuration. Dr. F. S. Smith, of Lock Haven, Pa., who has used the fluid extract of the bark in his practice, judges it one of the best remedies at his command in certain forms of bilious sick headaches; and Dr. E. M. Hale is of the opinion that in all the diseases mentioned above Chionanthus will often prove to be the simillimum.

PART USED AND PREPARATION.—The fresh bark, including that of the root, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. The whole is then poured into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place.

The tincture, separated from this mass by pressure and filtration, has a beautiful, slightly orange-red color by transmitted light, a bitterish barky odor, a bitter taste, and an acid reaction.

PHYSIOLOGICAL ACTION.—According to Drs. Lawsche and Scudder, the symptoms following the ingestion of this drug are substantially as follows: Severe frontal headache, bruised, sore sensation in the eyeballs; nausea, bitter eructa-

* Armenian manna is derived from Quercus Persica, J. & S., and Quercus variolutea, Kat (Cupuliferae); Australian manna, from Eucalyptus viminalis, Lab. (Myrtaceae); Tamarisk manna, Tamarix gallica, Linn. (Tamaricaceae); Persian manna, from Alhagi camelorum, Fisch. (Leguminosae); and Briançon manna, from Pinus Larix, Linn. (Coniferae).

† Our common purple Lilac is *var. violacea*, and the white, *var. alba*, both natives of Persia.
tions and retching, followed by pressure to stool; tongue coated greenish-yellow; uneasy sensations throughout the alimentary tract; vomiting of ropy, bitter, dark-green, bilious matter; blackish evacuations of the bowels; slow pulse; cold perspiration, and great general weakness.*

Description of Plate 136.

1. End of a flowering branch, Landisville, N. J., June 7th, 1885.
2. A flower.
3. A flower with broken petals, showing essential organs.
4. Stamen.
5. Pistil and calyx. (2–5 enlarged.)

* Dr. Scudder in *Eclectic Med. Jour.*, May, 1876; Dr. Lawche in *N. A. Jour. of Hom.*, 1883, p. 612.
Fraxinus Americana, Linn.
N. ORD.—OLEACEÆ.
Tribe.—FRAXINEÆ.
GENUS.—FRAXINUS,* TOURN.
SEX. SYST.—DIECIA DIANDRIA.

FRAXINUS.

WHITE ASH.

SYN.—FRAXINUS AMERICANA, LINN.; F. ACUMINATA AND JUGLANDIFOLIA, LAM.; F. EPIPTERA, MICHX.; F. DISCOLOR, MUHL.; F. CANADENSIS, GAERTN.; F. ALBA, MARSH.
COM. NAMES.—AMERICAN WHITE ASH; (FR.) LE FRÉNE BLANC; (GER.) WEISSE ESCHÉ.

A TINCTURE OF THE FRESH BARK OF FRAXINUS AMERICANA, LINN.

Description.—This beautiful timber tree usually attains a growth of from 40 to 60 feet or more; trunk generally naked for about half the whole growth; bark gray, furrowed, and transversely fissured with great regularity; branchlets gray and glabrous; buds rust-colored. Leaves opposite, odd-pinnately compound, and over a foot in length; leaflets 7 to 9, short-stalked, varying from ovate to oblong-lanceolate; all acuminate, entire or sparsely denticulate, pale or whitish, and often pubescent beneath, especially upon the mid-rib; petioles glabrous. Inflorescence densely paniculate, especially in the male—all developed from special buds, from the upper axils of the previous year’s growth; Flowers dioecious, apetalous; Male flowers: Calyx minute, campanulate, with 4 sharp teeth, or sometimes obsolete or wanting; stamens 2 to 4; filaments shorter than the large anthers; anthers linear-oblong, mucronate. Female flowers: Calyx small, persistent; stamens even, abortive ones rarely present; style erect; stigma 2-lobed, lobes revolute; ovary 2-celled, ovules a pair from the summit of each cell, one usually abortive. Fruit a dry samara about an inch and a half long; body oblong, cylindraceous, terete, barely acute at the base, merely 1-nerved, not margined, about one-half as long as the lanceolate or oblanceolate, slightly emarginate, apical wing. Seed oblong, filling the cell; cotyledons elliptical; radicle slender.

History and Habitat.—The White Ash abounds in rich or moist woods from Canada southward to Florida, and westward to Louisiana, where it flowers on the appearance of the leaves. It was introduced into English gardens in 1723, but does not flourish there as here in its native climate.

The wood is very tough, fine-grained and elastic, and, were it not for its weight, would make fine cabinet material. It weighs 35 lbs., 10 oz. per cubic foot, and has a sp. gr. of .570. Ash furnishes material for the most strained parts of wagons, as well as for all the heavier agricultural implements.

* φράξινος, φράξις, separation; as the wood splits with facility.
An infusion of White Ash bark has been much used in cases where an astringent tonic was deemed necessary; it also proves cathartic, and has been found useful in constipation, especially of dropsical subjects. It has received much praise in mastitis, and enlargement of the spleen, as well as in some forms of eczema, and in gouty affections. There is a belief extant in the South that the seeds prevent accumulation of fat.

Dr. Porcher quotes some unmentioned author as follows: The leaves of this plant "are said to be so highly offensive to the rattlesnake, that that formidable reptile is never found on land where it grows; and it is the practice of hunters and others, having occasion to traverse the woods in the summer months, to stuff their boots or shoes with White Ash leaves, as a preventive of the bite of the rattlesnake." My father relates that, among the settlers of Orange Co., N. Y., it was always asserted that the Aborigines used to defend themselves from this snake by carrying White Ash leaves about their persons. How much dependence might be placed in this prophylactic, it is hard to tell.

PART USED AND PREPARATION.—The fresh bark of the young twigs, as well as that of the root, is treated in the same manner as that of the previous species.*

The tincture has a clear, beautiful, reddish-orange color by transmitted light; an odor resembling that of arnica tincture; an astringent, then very bitter, taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—There is, as yet, considerable doubt concerning the principles constituting this bark, yet the experiments of H. M. Edwards,† J. M. Bradford,‡ Jos. C. Roberts,§ and especially Edward Kremers,‖ point to, at least, a great similarity between this species and Fraxinus excelsior and nigra, which, in part, yield the following:

\[\text{Fraxin, } C_{32}H_{39}O_{20}. \]

Fraxin forms in tufts of white, lustrous, acicular forms, slightly bitter and acrid, losing water at 110° (230° F.), fusing at 320° (608° F.) and decomposing. It is sparingly soluble in cold water and alcohol, the aqueous solution giving a beautiful blue fluorescence. Dilute acids resolve the body as follows:

\[\text{Fraxin. } \left(C_{32}H_{39}O_{20} \right) + (H_2O)_2 = (C_6H_{12}O_6)_2 + (C_{10}H_8O_3)_2. \]

\[\text{Sugar. } \]

\[\text{Mannite, } C_6H_6(OH)_6. \]

This saccharose body, found in many plants, as noted on page 136-2, was identified in this species by Kremers and others. It may be extracted from manna by boiling that substance in alcohol, from which it crystallizes in tufts of long, rhombic needles, possessing a pleasant, sweetish taste. The crystals from our species were found by Kremers to fuse at 162°-163° (323.6°-325.4° F.), and decompose at higher temperature, taking fire and leaving

* Page 136-2.
‡ Ibid., p. 282.
§ Ibid., 1885.
¶ A crystalline body, as yet uninvestigated, having a slightly acerb taste.
** The Fraxin of Keller.
a black residue, which finally volatilized. Mannite from *F. ornus* crystallizes as above, loses no weight at 120° (248° F.), fuses at 165°–166° (329°–330.8° F.), boils at 200° (392° F.), a portion volatilizing; another losing two atoms of the compound radical OH, and becoming a syrupy mass of mannan (C₆H₆O(OH)₄), which, if left to itself, reverts to mannite by its hygroscopic power; the rest remaining unchanged; if, however, the temperature is raised to 250° (482° F.), the mass swells up and is destroyed. This body, as isolated from our species, is soluble in cold water and boiling alcohol, and insoluble in ether, which is also true of the old-world product.

Oil of Fraxinus.—A small quantity of this volatile body has been isolated or noted by all experimenters upon the bark. It is described by Roberts as somewhat aromatic, bland, and having a yellow color.*

Fraxitannic Acid, C₅₃H₆₂O₇.—This body, extracted by Gintl and Reinitzer,† from the leaves of *F. excelsior*, has not been proven in the bark of our species, but the analyses made, except that of Edwards, seem to point to its existence. It is described as an amorphous, yellow-brown, brittle body, soluble in alcohol and water, and precipitable, like other tannins on saturation with common salt, but not by tartar emetic.

[An alkaloid is suspected by Edwards, Roberts, and Kremers, but remains to be proven a separate principle from Fraxin.]

An acrid and a neutral resin, starch, gum, etc., have also been determined by the above experimenters.

PHYSIOLOGICAL ACTION.—The experiments of Dr. Wright‡ gave the following effects from four ounces and a half of the tincture taken in three days: Vertigo and headache, followed by fever; fever sores upon the lips; constipation; scanty urine; pedal cramps; and wakefulness.

Description of Plate 137.

1. A female flowering spray, Binghamton, N. Y., May 1st, 1886.
2. Female flower.
3. Section of ovary.
4. Fruit.

* That from the leaves of *F. excelsior* has the odor of syringia flowers, boils at 175° (237° F.), and has the composition C₅₃H₆₂O₇—*Montash. Chem.*, iii, 745–762, from Am. *Jour. Phar.*, 1883, 371.
† *Ibid.*
‡ *U. S. Med. Investig.*, 1875, 326.
SERPENTARIA.

VIRGINIAN SNAKE-ROOT.

SYN.—ARISTOLOCHIA SERPENTARIA, LINN.; A. SERPENTARIA, VAR. BARTONII, DUCH.; A. OFFICINALIS, NEES.; A. SAGITTATA, MUHL.; A. HASTATA, NUTT.; ENDODECA SERPENTARIA & BARTONII, KLOT.

COM. NAMES.— SNAKE-ROOT,† OR WEED; SERPENTARY ROOT, BIRTHWORT, SNAGREL; (FR.) SERPENTAIRE OU COULBUVRBE DB VIRGINIE; (GER.) SCHLANGENWURZEL.

A TINCTURE OF THE DRIED ROOT OF ARISTOLOCHIA SERPENTARIA, L.

Description.—This small, aromatic perennial herb, grows to a height of from 8 to 15 inches. Root somewhat horizontal, more or less knotty, giving off—principally from its under surface—a multitude of long, fibrous, branching rootlets, its dorsum showing the scars of previous stems. Stems few or single, erect, flexuous, pubescent, branching at the naked or nodular and bracteolate base. Leaves petioled, thin, ovate, ovate-lanceolate, or nearly half-red-shaped, entire, acuminate; base cordate, or auriculate. Stipules none. Inflorescence single, terminal, upon bracted, flexuous peduncles, arising from the base of the stem; flowers apetalous, irregular. Calyx tubular, sigmoid, pubescent, and adherent to the ovary; tube somewhat dumb-bell shaped, i. e., dilated at the apex, gibbous at the base above the ovary, and narrowly constricted in the throat; limb flat, more or less obtusely 3-lobed, the opening looking obliquely upward. Stamens 6; anthers 12 (contiguous in pairs, appearing but 6), sessile, adnate to the back of the stigma. Style very short and thick; stigma short and sarcous, divided into 3 to 6 flattened lobes, with a thickened apical margin. Fruit a naked, somewhat cylindrical, slightly 6-angled, 6-valved, septicidal capsule; pericarp smooth, dark brown, and papyraceous; seeds several in each cell, somewhat flattened-pear-shaped, carunculate about the fundus, and channelled upon the upper surface, where the raphe—a white, thick, fleshy body—runs along its centre.

Aristolochiaceae.—A small family of twining shrubs, or low herbs, principally natives of South America, but having a few scattering species in the warmer parts

* Apē'os, arist'os, excellent; λοχή, lochos, a parturient female; from the medical qualities of *A. Clematitidis*, which is said to hasten the delivery of the placenta, and accelerate lochial discharges.

† The American Snake-roots are, beside this species, Black Snake-root (*Sanicula Canadensis*, and *Marilancio*), *Umbellifera*; White Snake-root (*Eupatorium ageratoides*, Linn.), *Composite*; Seneca Snake-root (*Polygala Senega*, Linn.), *Polygalaceae*; and Button Snake-root (various species of *Liatris* (*Composite*), and *Eringium Yucofolium*, Michx., *Umbelliferae*). These do not include the Rattlesnake roots.
of both hemispheres. *Leaves* alternate, petioled, generally cordate, entire, and deciduous; *stipules* opposite the leaves, or wanting. *Aestivation* valvate; *flowers* brown or lurid, perfect, and usually solitary. *Calyx* tubular, conspicuously peta- loid, coherent with the ovary; *limb* coriaceous, regular or irregular. *Stamens* 6 or 12, somewhat united with the style, or more or less distinct, inserted upon an epigynous disk; *filaments* short, or wanting; *anthers* adnate, extrorse, 2-celled; *dehiscence* longitudinal. *Ovary* 6-celled; *style* short and thick, or wanting; *stigmas* radiating, more or less lamellate. *Fruit* a 3- to 6-celled, dry capsule, or succulent berry. *Seeds* numerous, rounded or angular, anatropous; *raphe* prominent and fleshy; *embryo* minute, basal; *albumen* sarcous.

The only plant of this order, outside the genus *Aristolochia*, in our Materia Medica, is the European emetic, cathartic, diuretic, and sternutatory *Asarabacca* (*Asarum Europeum*, Linn.). The American Wild, or Indian Ginger (*A. Canadense*, Linn.), though not exhibiting the action of the European species to any great extent, except, mayhap, the errhine power, will, without doubt, soon be added to our medicaments.

History and Habitat.—Serpentaria is indigenous to North America, ranging from the State of Connecticut to Indiana, and thence southward. It grows in rich, shady woods, and blossoms in July. The flowers of this plant, like those of Asarum, are usually hidden beneath the dry leaves and loose top-mould of its chosen localities.

Strange as it may seem, almost all the species of this large genus are esteemed, by the natives of the countries in which they grow, as remedies against the poisonous effects of snake bites (Alexiterics); this use being fully known to each nation without previous communication with each other. Only one species has been proven beside Serpentaria, viz.: The Brazilian Snake-root *Aristolochia* (*Milhomens*) (*A. cymbifera*, Mart.), which was formerly considered alexiteric, antiparalytic, antiperiodic, and aphrodisiac. Among the more or less prominent species are: The Texan or Red River Snake-root, *A. reticulata*, Nutt., the chemistry of which has been proven by Wigand* to be nearly identical with that of Serpentaria; the North European *A. clematitis*, Linn., once noted for its emmenagogue and febrifugal properties; the South European *A. pistolochia*, having properties similar to those of Serpentaria, and *A. longa*, Linn., *A. baetica*, Linn., and *A. rotunda*, Linn., used in Germany as emmenagogues, antiarthritics, and stimulants. The South American *A. trilobata*, Linn., is said to be superior in quantity and quality of action to Serpentaria, it being an energetic sudorific in doses of 6 to 20 grains. The Brazilian *A. anguicida*, Linn., is thought, by Humboldt and Lindley, to be the source of the celebrated alexiteric *guaco* of the Colombians; it is stated that a few drops of the juice of this plant, placed in the mouth of a snake, will stupefy it, and a larger dose cause its death. The East Indian *Gardigavapo* (*A. bracteata*, Retz.), is anthelmintic and antipsoric; and *A. Indica*, Linn., emmenagogue, antiarthritic and stomachic. Other alexiterics are *A. bilobata* (Brazil),

A. sempervirens, Linn. (Colombia), A. fragrantissima, Ruiz. (Peru), A. grandiflora, Swartz (Jamaica), A. macroura, Gomez (Brazil), A. tomentosa, Sims (U. S.), A. hirsuta, Muhl., and A. Sipho, L'Her. (N. A.).

The medical history of Serpentaria begins with Cornutus' first notice of the plant in 1635,* augmented by Parkinson in 1640. These authors, together with Dale (1693) and Geoffroy (1741), speak in high terms of its alexipharic properties. The root was admitted into the London Pharmacopoeia in 1650.

Serpentaria has been classed among the diuretics and warm stimulating tonics and diaphoretics, and used with some success in the treatment of low forms of fevers, especially those of a septicaemiac type, this use resulting from its alexipharic properties. It was also used in intermittents and remittents before Quinine had been isolated from bark. Of this use Sydenham says:† “To cure tertians in poor people who are not able to bear the charge of a long process (Ital. ours), take of Virginia Snake-weed, finely powdered, one scruple, of white wine, three ounces, mingle them; let the sick take it two hours before the fit, and being well covered with clothing, let him sweat three or four hours, and let it be repeated twice as the fit approaches.”‡ Serpentaria was also often given in mixture with Peruvian Bark, thus rendering the latter more active, and at the same time preventing the ill effect of bark upon the stomach; of this Dr. Chapman says,§ that “in some patients such is the irritability of the stomach, that bark, in substance, cannot be retained even in the smallest dose. In such cases we resort to it in decoction or compounded with Serpentaria, which, I think, renders the mixture quite as pleasant to the taste, as would cloves or cinnamon, as comfortable to the stomach, and perhaps more efficacious. Combinations too of this sort will cure intermittents when the bark, alone, fails” (Ital. ours). Serpentaria was also used in bilious, typhoid, and typhus fevers, small-pox, erysipelas, pneumonia, amenorrhoea, and in fact wherever a stimulating diaphoretic was deemed advisable. It was also considered a stimulating and antiseptic poultice for open, indolent wounds, ulcers, etc.; of this use Dr. Porcher wisely remarks:|| “This antiseptic power of certain vegetables should be compared with their medicinal effects when prescribed internally.”

The official preparations of this drug in the U. S. Ph., are: Extractum Serpentariae Fluidum; Tinctura Serpentariae and Tinctura Cinchorae Composita.* The Eclectic preparations are: Infusum Serpentariae; Extractum Serpentariae Fluidum; and Tinctura Serpentariae Composita.**

PART USED AND PREPARATION.—The dried root, coarsely powdered, is covered by five parts by weight of alcohol, and kept eight days in a well stoppered bottle, in a dark, cool place, being shaken thoroughly twice a day.

* Canadeniun Plantarum Historia, l.c.
† 1679.
‡ Did Sydenham already know, by experience, that the general exhibition of Peruvian Bark in fevers was only applicable to the wealthy who could stand the cost of a long attendance?
§ Element. Ther., ii, 411.
|| Resources South, Field and Forests, l.c.
† Cinchona rubra, Citrus medicus, and Aristolochia serpentaria.
** Aristolochia serp., Ipecacuanha, Crocus sat., Camphora, and Opium or Cyprieium.
The tincture, separated from this mass by decantation, pressure, and filtration, should have a beautiful, deep reddish-orange color by transmitted light. Its odor should be decidedly terebinthic, resembling exactly that of the root before extraction; its taste warm, camphoraceous, terebinthic, and at last very penetratingly bitter; and its reaction acid.

CHEMICAL CONSTITUENTS.—Aristolochin. This amorphous yellowish body has a bitter and slightly acrid taste, and is soluble both in water and alcohol.8

Oil of Serpentaria.—This yellowish-brown oil is obtained by aqueous distillation of the roots. It is lighter than water, and has an odor and taste resembling a mixture of valerian and camphor.9

Aristolochia-camphor.—This body, greatly resembling pure camphor, is deposited upon the cool sides of the receiver of the products of an aqueous distillation of the root.4

Gum,1,23 coloring matter,1 bitter-principle,134 oil,18 resin,1234 extractive,12 and the volatile oil,234 have been determined in this species.

PHYSIOLOGICAL ACTION.—Jörg determined as a result of his experiments* that Serpentaria caused an excitation of the alimentary tract with subsequent determination of blood to all the abdominal viscera, more frequently followed by flatulence than mucous secretion. The symptoms usually following doses of from 2 to 5 scruples of the root were: Copious salivation; eructations; great nausea, and vomiting; a sense of weight in the stomach; distention of the abdomen, with colic and borborygm, frequent expulsion of flatulence, tenesmus and solid stools, with itching at the anus; a sensation of heat, and weight in the head followed by cephalagia; violent and frequent desire to urinate with greatly increased discharges of pale, watery urine.

Description of Plate 138.

1–2. Whole plant from Pittsburgh, Pa., June 18th, 1885.
2. Root, and one full length rootlet.
3. Face view of flower.
4. Longitudinal section of calyx.
5. Style, stigma and stamens.
6. Fruit.
7. Seed.
(5 and 7 enlarged.)

1 Tilden’s analysis, \textit{Jour. of Mat. Med.}, ii, N. S., 203.
2 Buckholz.
3 Chevallier, \textit{Jour. de Phar.}, 1820, 565.
4 Bigelow, \textit{Am. Med. Bot.}, iii, 85.
5 Lewis, \textit{ibid.}.
6 \textit{Materialien zu einer Künstlichen Heilmittellehre}, 1825.
Phytolacca Decandra Linn.
N. ORD.—PHYTOLACCACEÆ.

GENUS.—PHYTOLACCA,* TOURN.

SEX. SYST.—DECANDRIA DECAGYNIA.

PHYTOLACCA.

POKE WEED.

SYN.—PHYTOLACCA DECANDRA, LINN.; P. VULGARIS, DILL.; P. AMERICANA, BOERHA.; BLITUM AMERICANUM, MUT.

COM. NAMES.—POKE WEED OR ROOT,† SKOKE, GARGET, CROWBERRY,‡ PIGEON-BERRY, JALAP, CANCER-ROOT,§ AMERICAN NIGHTSHADE, POCAN OR OKAN (Virginia tribes). COUCM (Northern tribes), CHONGRAS, (Louisiana); (FR.) MORELLE A GRAPES, HERBE DE LA LAQUE; (GER.) AMERIKANISCHE SCHARLACHBEERE OR KERMESBEERE.

A TINCTURE OF THE FRESH ROOT OF PHYTOLACCA DECANDRA, LINN.

Description.—This smooth, purplish stemmed perennial, grows to a height of from 4 to 10 feet. Root large, fleshy, fusiform, verrucose, and variously branched, the apex or head showing the scars of the previous stems; the body is easily cut or broken, its section being white, marked by annular rings and distinct radii, and the bark very thin, almost papyraceous. Stem stout, cylindrical, hollow and branching; pith sectioned by numerous discoid septa, thin in the centre, but so thickened at the edges as to cause the interspaces to be fusiform. Leaves alternate or scattered, ample, ovate-lanceolate, acute at each end; petioles thick. Inflorescence terminal, many flowered racemes, which become lateral and opposite the leaves as the growth proceeds; peduncles ascending; pedicels divaricate, usually three-bracted, sometimes branched. Calyx white; sepals 5, petaloid, ovate-obtuse, concave and incurved. Corolla none. Stamens 10, somewhat shorter than the lobes of the calyx; filaments subulate; anthers elliptical, 2-lobed. Ovary green, composed of 10 carpels closely united into a ring; styles 10, short, separate, recurved at the apex; stigma simply a stigmatose surface on inner aspect of the recurved portion of the style. Fruit a deep purple, depressed-globose, juicy, 10-celled berry, marked with 10 slight furrows; seeds 10, one in each cell, vertical; embryo curved in a circle around the albumen; cotyledons linear; albumen farinaceous.

Phytolaccaceæ.—The special characters of this small family are embodied in the above description of its principal and typical genus. The order differs little from the next (Chenopodiaceæ), mostly in having alternate entire leaves, a several celled ovary, compounded of as many carpels united into a circle, and forming a berry in fruit.

* φυτόν, plant; ἱακ, lake; from the coloring properties of the berries.
† A perversion of the Indian name.
‡ The true crowberry is Empetrum nigrum, Linn. (Empetraceæ).
§ This name properly designates the American species of Epiphegus and Conopholis (Orobanche), both of which are members of the Orobanchaceæ, and are now being proven.
Five other species of Phytolacca are more or less used and have properties similar to ours, viz.: the Mexican and West Indian *P. octandra*, the berries of which are used in lieu of soap; the African *P. Abyssinica*; the recurved leaved *P. dodecandra*; the East Indian *P.icosandra*; and the South American tree-like *P. dioica*.

History and Habitat.—The poke is indigenous to North America, where it is common in light, rich soils, and flowers throughout the summer months. It has become a common weed in all the countries bordering upon the Mediterranean sea, both north and south, undoubtedly introduced from America.

The medical uses of poke-root were handed down to domestic and botanic practice by the aborigines, who valued the plant not only as an emetic, but also as an efficient remedy in gonorrhoeal and syphilitic rheumatism.

Phytolacca, among the earlier American writers upon medicinal plants, was considered fully equal to Ipecacuanha as an emetic; its use, however, often caused narcotic effects, very injurious to the system. Its emetic action usually followed doses of 10 grains of the powdered root; both emesis and catharsis were effected by from 20 to 30 grains. The serious difficulties, however, in its employment were a slowness to begin its operation, and also to suspend its catharsis when once begun; it became often necessary to check its action upon the bowels with some preparation of opium. It was considered, however, to be the proper cathartic to use in partial paralysis of the bowels.

The root with lard was found to be an excellent ointment for the cure of many forms of skin diseases, notably: psoriasis, eczema capitis, and tinea circumcincta; also as a stimulant vulnerary in syphilitic ulcers, and a softening application in mastitis, as well as scrofulous swellings of glands in general. It was also considered an excellent poultice to cause rapid suppuration in felon.

A tincture of the berries was found to be often curative, or at least in some cases palliative, of syphilitic and gonorrhoeal rheumatism, as well as non-specific chronic forms of that disease.

As an inevitable result of its uses as above, it was experimented with as a cure for cancer and malignant tumors, but its success in the cure of these terrible maladies never became notable.

I noted in my readings several years ago that the berries had been used for pies by frugal housewives, and often since have half determined to try poke-berry pastry; discretion has, however, always overruled valor, and the much-thought-of pie is still unmade and uneaten. The young shoots, however, make an excellent substitute for asparagus, and I much prefer them, if gathered early and discriminately.

The official forms of Phytolacca in the U. S. Ph. are: *Phytolacca Bacca* and *Phytolacca Radix*. In the Eclectic Materia Medica we find *Calaplasma Phytolacca*; *Decoctum Phytolacca*; *Extractum Phytolacca*; *Pilula Phytolacca Composita*; *Syrupus Phytolacca Compositus*; *Tinctura Phytolacca*; *Tinctura Cimicifugae Composita*; *Unguentum Phytolacca*; and *Vinum Phytolacca Compositum*.

* Phytolacca, Stillingia, and Stramonium. † Phytolacca, Ampelopsis, Cimicifuga, and Kalmia. ‡ Phytolacca and White turpentine.
PART USED AND PREPARATION.—The fresh root gathered in Autumn, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, it is placed in a well-stoppered bottle and allowed to stand eight days in a dark, cool place.

The tincture separated from the above by filtration, should have a clear, light yellowish-orange color by transmitted light, a bitterish odor and taste, and a very slight acid reaction.

CHEMICAL CONSTITUENTS.—Phytolaccine. Although an acrid principle was deemed present by all previous analysts of the root of this plant, it seems to have remained in some doubt prior to the analysis of Edmond Preston.† His analysis yielded small crystals, almost white when purified, giving precipitates with the four alkaloidal reagents—phosphomolybdic acid, tannin, iodohydrargyrate of potassium, and auric chloride, and were entirely dissipated when fused and subjected to further heat upon platinum foil. They proved entirely soluble in alcohol, moderately so in water, and fully in nitric, sulphuric, and hydrochloric acids, giving, however, no characteristic color test. He also found the hydrochlorate salt, as nearly colorless, strongly acid, acicular crystals, moderately soluble in alcohol, and fully so in water.

Phytolaccic Acid.—There seems to be little doubt that A. C. Erhard's analysis determines such an acid to exist in the root;‡ Its crystals were in his analysis, however, combined with potassium. A. Terreil§ found the same acid salt of potassium in an alcoholic extract of the berries. Isolated, it was amorphous, yellowish-brown, transparent, non-deliquescent and very soluble in water and alcohol. An analysis of the berries, however, by Cramer, elicited no acid answering to the above, but instead, one proving itself to be malic.§ Concerning this acid M. Braconnot says:|| The alkali of this plant is neutralized by an acid having considerable affinity to the malic, but with a few shades of difference. With lime and lead malic acid forms flocculent precipitates, very easily soluble in distilled vinegar; but those with the phytolaccic acid are insoluble. He farther judges this peculiar acid to be probably a body between malic and oxalic acids, or an oxygenized malic.

Beside the above, potash exists in such large per cent. that some thought has been devoted to the advisability of its manufacture from the roots. Starch, tannin, gum, sugar, resin, and fixed oil have also been determined.†

The coloring matter of the berries has been largely experimented upon, with a view to its utility as a dye. No mordant, however, is found that will fix its color. With alum, it is somewhat fast but not permanent; with urine, it dyes blue; and alone, it is very fugitive, although very brilliant at first. M. Braconnot, in his experiments with the juice of the berry, turned yellow by the addition of lime-water, found it to be one of the most delicate tests for acids: four times as

† New Remedies, 1879, 258.
‡ Compt. rend., xci, pp. 856-8; Am. Jour. Phar., 1881, 325.
|| Annals de Chimie, vol. LXXII.
† Donnelly, Am. Jour. Phar., 1843, 165; Pape, Ibid., 1881, p. 579; Preston, l. c.; Erhard, l. c.
sensitive as an infusion of litmus, but its use limited, as freshness of the juice is absolutely necessary.

PHYSIOLOGICAL ACTION.—The principal primary action of Phytolacca is upon the stomach as an emetic; this action is remarkably slow, it being from an hour to two hours after its ingestion before emesis occurs. The next effects noticed are upon the nervous system. The toxic symptoms from an overdose are: more or less nausea, violent vomiting and purging, great thirst and discomfort in the epigastric region, feeble pulse, dimness of vision, vertigo, drowsiness, great prostration and coldness of the periphery, followed by convulsion, and in one case, death.

The grated fresh root applied to the skin causes a sensation of heat and smarting, followed by redness and finally vesication.

On animals, Dr. Schultz found that the juice of the root in repeated trials resulted only in emesis, catharsis, and drowsiness.

Compiling the symptoms occurring in various cases of poisoning, voluntary and involuntary, the most prominent and duplicating effects are as follows: mental indifference and stupor, dullness, giddiness, and vertigo; severe pressive headache with soreness; dilation of the pupil, with dimness of vision and photophobia; paleness of the face; tongue white-coated, with a very red tip; it feels rough and blistered, and great pain is produced at its root on swallowing; profuse salivation, redness and soreness of the throat, followed by a collection of thick white or yellowish mucus about the fauces; the throat feels full and constricted, almost to suffocation, associated with a sense of suffocation also in the chest; every attempt to swallow attended with terrible shooting pains through the ears; nausea, cramps, and violent vomiting, followed by epigastric tenderness; griping pains in the abdomen, with flatulence; violent purging, continuing until the passages become mucus and blood, and the desire constant; dryness of the larynx, dry hacking cough, and shallow breathing; feeble pulse; stiffness of the neck, and in general, where lymphatic glands abound; constant dull, heavy aching in the lumbar region and sacrum, with painful weakness and stiffness of both the upper and lower limbs; general sense of soreness and prostration, with drowsiness and coldness, followed by profuse cool perspiration.

As Homœopathists, this account of the action of Phytolacca at once impresses us with its certain value in diphtheria, when a like condition exists, as it often does. Its numerous secondary symptoms in various organs noted in the provings, make it a valuable remedy in many forms of disease. On the whole, this remedy is one of the most important of the purely American plants.

DESCRIPTION OF PLATE 139.

2. Root.
3. Horizontal section of root.
4. Fruit.
5. Flower.
6. Section of ovary.

(1-4 once reduced.)
N. ORD.—CHENOPODIACEÆ.

GENUS.—CHENOPODIUM;* LINN.

SEX. SYST.—PENTANDRIA DIGYNIA.

CHENOPODIUM ANTHELMINTICUM.

WORMSEED.

SYN.—CHENOPODIUM AMBROSIOIDES, VAR. ANTHELMINTICUM, GRAY; C. ANTHELMINTICUM, LINN.; C. SUFFRUTICOSUM, WILLD.; AMBRINA AMBROSIOIDES, SPACH; ORTHOSPORUM ANTHELMINTICUM, R. BR.

COM. NAMES.—AMERICAN WORMSEED, JERUSALEM OAK,† STINKWEED; (FR.) CHÉNOPODE ANTHELMINTIQUE, L'ANSERINE VERMIFUGE; (GER.) WURMSAAMEN GANSEFUSS, AMERICANISCHER WURMSAAMEN.

A TINCTURE OF THE SEEDS OF CHENOPODIUM AMBROSIOIDES, VAR. ANTHELMINTICUM, GRAY.

Description.—This smoothish, more or less viscid-glandular, and pleasantly-aromatic annual, grows to a height of about 2 feet. Stem erect, stout, angular, and grooved. Leaves slightly petiolated, oblong-lanceolate, repand-toothed or sometimes the lower almost lobed, the upper entire and tapering at both ends. Inflorescence in numerous simple, slender, elongated, more or less leafy or leafless spike-like racemes; flowers sessile, glomerulate, perfect, and bractless. Calyx 5-cleft; lobes ovate, pointed, not appendaged nor keeled. Stamens 5; filaments filiform; anthers globular, 2-celled. Ovary covered on the top with small oblong stalked glands; styles 2 to 3, stigmatic by a fringed inner surface. Fruit perfectly enclosed in the calyx, obtusely angled; seed lenticular, smooth and shining; testa crustaceous. Embryo forming about three-fourths of a ring around the mealy albumen.

Chenopodiaceae.—This large family of homely and more or less succulent herbs furnishes to North American Botany 15 genera, comprising 90 species and 15 varieties. Leaves mostly alternate, exstipulate, and bractless. Flowers minute, greenish; calyx free, imbricated in the bud. Stamens as many as the lobes of the calyx or sometimes fewer; filaments inserted opposite the calyx-lobes or upon their base. Ovary 1-celled; styles or stigmas 2, rarely 3 or 5. Fruit a 1-celled uricle or rarely an achenium. Embryo coiled into a ring, conduplicate or spiral; albumen mealy or sometimes wanting.

* Nyr. chen, a goose; nuf, peus, a foot; from a fancied resemblance in the leaves.
† This name belongs to C. Botrys, Linn.
The only other proven plant in this order is the European Stinking Goosefoot (\textit{Chenopodium vulvaria}, Linn.), which in general practice is considered antispasmodic and emmenagogue. General medical practice notices the following: The Egyptian \textit{Chenopodium baryosmon}, Rom., a fetid emmenagogue; the European and Asiatic Jerusalem Oak (\textit{C. Botrys}, Linn.), a French expectorant; and the American Mexican Tea (\textit{C. ambrosioides}, Linn.), which is considered nervine, anthelmintic, and emmenagogue, and used in chorea. The seeds of the European \textit{Atriplex angustifolia}, Smith, are emetic, as are also those of the Tartarian Garden Orache (\textit{A. hortensis}, Linn.). The European and Asiatic \textit{Salsola Kali}, Linn.; the Spanish \textit{S. sativa}, Löft.; the Mediterranean \textit{S. Soda}, Linn.; and the Mediterranean and Caspian \textit{S. tragus}, Linn., yield the finest Alicant Soda. The European Saltwort (\textit{Salicornia annua}, Smith) is another source of salsoda.

Among the esculent plants of this order the most prominent are: The common Garden Spinach of the Levant (\textit{Spinacia oleracea}, Linn.) and the Beet (\textit{Beta vulgaris}, Linn.). The young and tender plants of the Lamb’s Quarter (\textit{Chenopodium album}, Linn.) “are collected by the Navajoes, the Pueblo Indians of New Mexico, all the tribes of Arizona, the Diggers of California, and the Utahs, and boiled as herbs alone, or with other food. Large quantities also are eaten in the raw state. The seeds of this plant are gathered by many tribes, ground into flour after drying, and made into bread or mush. They are very small, of a gray color, and not unpleasant when eaten raw. The peculiar color of the flour imparts to the bread a very dirty look, and when baked in ashes it is not improved in appearance. It resembles buckwheat in color and taste, and is regarded as equally nutritious. The plant abounds in the Navajo country.”∗

\textbf{History and Habitat.}—American Wormseed is indigenous to Mexico and South America, but has become quite thoroughly naturalized as far north as Missouri and New England, where it grows in waste places about dwellings and in manured soils, and blossoms from \textit{july} to \textit{September}. It was introduced into England in \textit{1732}. The American Aborigines used the whole herb in decoction in painful menstruation, especially of the older women, but its principal use has been the leaves and seeds as a vermifuge; as such it was noticed by Kalm, Clayton, and Schoepf, and is to-day considered one of the best expellants of lumbricoids known. The principal method of administration is doses of from three to ten drops of the oil on sugar, three times a day for several days, the last dose being followed by a cathartic. The plant is also considered antispasmodic, antihysteric, emmenagogue, and a useful remedy in chorea.

The fruit and \textit{Oleum chenopodii} are official in the U. S. Phar., and in the Eclectic Materia Medica, where it is also a compound of \textit{Mistura Chenopodii Composita}† and \textit{Mistura Olei Composita}.‡

\textbf{PART USED AND PREPARATION.}—The fresh seeds are ground to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with

† Castor Oil, Wormseed Oil, Anise Oil, and Tincture of Myrrh.
‡ In this preparation Oil of Turpentine is used in place of the Myrrh.
one-sixth part of it, and the rest of the alcohol added. The whole is then poured into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place.

The tincture, separated from this mass by filtration, has a reddish-brown color by transmitted light; a characteristic repugnant odor; a bitter, astringent taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—Volatile Oil of Wormseed. This light yellow oil has a peculiar, strong, and quite offensive odor, and a pungent, bitterish, disagreeable but aromatic taste. Its sp. gr. when fresh is 0.908. It is freely soluble in alcohol, and boils at 190° (374° F.).

No analysis has yet been made to determine other principles in this species.

PHYSIOLOGICAL ACTION.—The symptoms in a man who took about half an ounce of the drug were those of a narcotico-acrid poison, affecting the brain, spinal cord and stomach. He was insensible, convulsed, and foamed at the mouth.† A man aged thirty took an ounce and a half of the oil and thirty drops of turpentine; the following symptoms came on: Nausea; vertigo; deafness to human voice, hearing acute for louder and more distant noises; aphasia; inability to control the muscles as desired for any continued effort, and fatigue from attempting so to do; hilarity at his futile attempts at talking; repeats his actions like a drunken man; convulsions and finally paralysis of right side; involuntary urination; apoplectic breathing; frothing at the mouth; drenching sweat; opisthotonos; icterus; and death during a comatose state followed; this on the fifth day from the ingestion of the drug.‡

DESCRIPTION OF PLATE 140.

1. Top of plant, Rawlinsville, Pa., Aug. 18th, 1885.
2. Leaf.
3. Portion of leaf, showing glands.
4. Male flower.
5. Sepal.
7. Pistil.
8. Fruit and calyx.
9. Seed.
10. Longitudinal section of seed.
11. Female flower.

(3–11 enlarged.)

† Phar. Jour., 1862, 330.
Polygonum Acre, H.B.K.
POLYGONUM.

WATER SMARTWEED.

SYN.—POLYGONUM ACRE, H. B. K.; P. HYDROPIPEROIDES, PURSH. (NOT MICHX.); P. PUNCTATUM, ELL.

COM. NAMES.—WATER PEPPER, SMARTWEED, BITING KNOTWEED; (GER.) KNÖTERICH.

A TINCTURE OF THE WHOLE FRESH PLANT POLYGONUM ACRE, H. B. K.

Description.—This pungently acrid, perennial herb grows to a height of from 2 to 5 feet. Rootstock creeping, ligneous; roots fibrous. Stem simple, smooth, or nearly so, rooting at its decumbent base; sheaths cylindrical, bristly fringed. Leaves larger and longer than those of P. hydroper, L., taper-pointed. Inflorescence in axillary and terminal, erect, slender, filiform, loosely-flowered, spike-like racemes. Stamens 8. Style mostly 3-parted; stigmas capitate. Achenia sharply triangular, smooth and shining. Cotyledons acumbent, slender; embryo in a groove on the outside of the albumen, and curved half-way around it; albumen hard and horny.

Polygonaceae.—This large family of herbs, furnished with watery acid or acrid juice, is represented in North America by 15 genera, comprising 165 species, the truly western genus, Erigonium, alone having 112 species and 10 varieties. The order is characterized as follows: Leaves alternate, entire; stipules in the form of sheaths (Ochreae), and placed above the usually swollen joints of the stem. Flowers mostly perfect; calyx more or less persistent, 3- to 6-parted. Stamens 4 to 12. Ovary 1-celled; styles or stigmas 2 or 3. Fruit dry and grain-like; seed single, erect, and orthotropous; embryo curved or straightish, on the outside of the albumen, rarely in its centre; radicle pointing from the base to the apex.

The only proven plant of this family, beside the four treated of in this work, is the Thibetan Rhubarb (Rheum officinale, Baill.). The rhubarbs used in general practice, either in lieu of the above species or individually, are: Chinese or Russian Rhubarb (R. palmatum, Linn.); English Rhubarb (R. raponticum, Linn.); R. Webbianum, Royle, R. emodi, Wallrich, from China; R. spiciforme and R. moorcroftianum, Royle, from the West Indies; R. leucorrhizum, Pal., from the mountains of Dolenkara; R. undulatum, Linn., from China and Siberia; R. capsicum, Fisch.
from the Altaic Mountains; *R. compactum*, Linn., from Chinese-Tartary; and *R. crassinervium*, Fisch., whose nativity is doubtful.

Other medicinal plants of the order are: The Seaside Grape of the West Indies (*Coccoloba uvifera*, Linn.), a powerful astringent, whose decoction, evaporated, is known as Jamaica Kino; the fruit of this plant is edible and pleasant, forming an article of commerce in the native markets. Of the genus *Polygonum* many species are astringent, particularly, however, Bistort, the rhizome of *P. bistorta*, Linn., which is highly esteemed in diarrhoea, leucorrhoea, gleet, and kindred affections; the European *P. amphibium*, Linn., is said to resemble sarsaparilla in its qualities, and has been substituted for it; *P. barbatum*, Linn., of the Cape of Good Hope, is considered diuretic; the fruit of the Knob Grass (*P. aviculare*, Linn.) is said to be emetic and cathartic; while *P. hydropiper*, Linn., is a vesicant and powerful diuretic when fresh.

The Western Indians, and especially those of Alaska, use the leaves of the Round-leaved Sorrel (*Oxyria digyna*, Campd.), chopped with those of the Water-cress and fermented, as a salad; the Indians along the Colorado River gather the abundant seeds of a species of *Rumex*, which they call Yerba Colorado, which they grind and make into bread;* while the domestic use of Buckwheat (*Fagopyrum esculentum*, Mœn.) as a flour for breakfast cakes is truly national.

History and Habitat.—Water Smartweed is indigenous to the United States, where it is common, especially southward; it habits ditches and waste places where the soil is wet and rich, and flowers from July to September. The use of Smartweed among the laity, who include *P. hydropiper*, Linn., is very general and extended, especially as a fomentation in amenorrhoea, dysmenorrhoea, enteritis, and mastitis, and internally in the same troubles and in coryza. The fresh leaves, bruised with those of the Mayweed (*Maruta Cotula*, Compositæ), and moistened with a few drops of oil of turpentine, make a speedy vesicant, and, as such, are highly esteemed; so quick is the action of Smartweed in this direction that it has received among boys the merited but unpleasant name, Ass-smart. A cold infusion has been found very serviceable in nursing sore-mouth, mercurial ptyalism, gout, and dysentery, and externally as a wash for indolent ulcers and painful hemorrhoids. In Mexico the infusion is used as a diuretic, and put into the baths of persons afflicted with rheumatism.

The Eclectic Materia Medica recommends its use in the following forms: *Infusum Polygoni, Extractum Polygoni Fluidum, Extractum Polygoni, Tinctura Polygoni,* and makes it a component of *Pilula Polygoni Composita;* and *Tinctura Caulophylli Composita.*

PART USED AND PREPARATION.—The whole fresh plant is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, it is poured into a well-stoppered

† Sulphate of Iron, Resin of Cimicifuga, Oleo-resin of Iris, and Extractum Polygoni.
‡ Caulophyllum, Ergot, Polygonum, and Sabina,
bottle, and allowed to stand eight days in a dark, cool place. The tincture, prepared from this mass by pressure and filtration, has a beautiful carmine color by transmitted light; no characteristic odor or taste; and an acid reaction. A penetrating biting sensation is noticed upon the tongue a short time after tasting this tincture.

CHEMICAL CONSTITUENTS.—*Polygonic Acid.* This doubtful body is said to form in green, deliquescent crystals, having a bitter and acrid taste, and a strong acid reaction, and to be soluble in alcohol, chloroform, and ether. Messrs. Trimble and Schuchard decide† that this body is simply a mixture of impure tannic and gallic acids, together with chlorophyll; and failed in their analysis of this plant to isolate a stable active principle; a volatile principle was, however, appreciable, which gave the pungency of the plant to all preparations made without the application of heat.

PHYSIOLOGICAL ACTION.—The following essentially enumerate the symptoms noted from ingestion of doses of from 10 to 60 drops of the tincture: Dizziness, fullness of the head, and pulsating pain; itching and burning of the eyes; irritation of the pituitary membrane and frequent sneezing; heat in the mouth and throat, with burning and dryness of the fauces; increased appetite and great thirst; nausea and burning of the stomach; rumbling of the abdomen attended by colic; great and ineffectual urging to stool; diarrhoea; urging to urinate; smarting of the urethra, and greatly increased pale urine; sharp stitching or pulsating pains throughout the body; a general feeling of weakness and debility; alternate heat and coldness; and profuse perspiration from moderate exercise. These symptoms point to an irritant to the mucous membranes of high value in the treatment of enteritis, gastritis, cystitis, and other inflammatory diseases of these tissues.

Description of Plate 141.

1. Stem in fruit, from Rawlinsville, Pa., Aug. 27th, 1885.
2. A portion of the base of the plant.
3. Seed.
4. Longitudinal section of seed.
5. Horizontal section of same.

(3–5 enlarged.)

FAGOPYRUM ESCULENTUM Moench.
N. ORD.—POLYGONACEÆ.

GENUS.—FAGOPYRUM,* TOURN.

SEX. SYST.—OCTANDRIA TRIGYNIA.

FAGOPYRUM.

BUCKWHEAT.

SYN.—FAGOPYRUM ESCULENTUM, MOENCH.; POLYOGNUM FAGOPYRUM, LINN.

COM. NAMES.—BUCKWHEAT; BEECH-WHEAT; (FR.) LE BLÉ NOIR, LE BLÉ SARRASIN; (GER.) BUCHWEIZEN, HEIDEKORN.

A TINCTURE OF THE MATURE PLANT, FAGOPYRUM ESCULENTUM, MOENCH.

Description.—This annual herb grows to a height of from eighteen inches to three feet. The stem is sub-cylindrical, delicate, smoothish, juicy, erect, and branched. The leaves are triangular-cordate, cordate-sagittate, or halberd-shaped, acute at the tip; the sheaths or ochreae semi-cylindrical. Inflorescence terminal, and axillarv, corymbose racemes, or panicles; flowers octandrous, white, pinkish, or greenish. Calyx petaloid, equally 5-parted, persistent, withering in fruit. Stamen 8; filaments filiform, arising from between the 8 honey-bearing glands; anthers innate, introrse, composed of 2 nearly separate cells. Styles 3, short, more or less persistent; stigmas 3, capitate. Seed acute, entire, triquetrous, longer than, and situated in, the cup of the calyx; albumen copious; embryo large, dividing the albumen into two equal parts; cotyledons broad, foliaceous, plicate, and twisted. Read description of the N. Ord. under Polygonum, 141.

History and Habitat.—The buckwheat plant is a native of Northern or Central Asia; it was introduced into Europe about the year 1440, and cultivated in England—according to Gerarde—in 1597. In the United States it is largely cultivated for fattening poultry, and for use as flour in breakfast-cakes; the production in 1880 was estimated at 14,617,535 bushels, fully one-third of which was raised in New York State alone. Although buckwheat is far removed from the cereals, yet in the composition of its seed it is strikingly similar to them. Its nutritive value, however, is low as compared to the more important of the cereals, not quite half its weight being fecula, while wheat yields nearly three-fourths its weight. The seed is said to be employed in some parts of Germany in the manufacture of beer.

* φυγ, Phagos, the beech; πυρ, pyros, wheat; the seed being shaped similarly to the nut of the beech (Fagus ferruginea, Ait.).

† From the Scottish word "buck," the beech; and the English "wheat."
A field of buckwheat at the prime of its flowering season is very odorous, and attractive to bees, who gather a large store of honey from the glands at the bases of the stamens; this honey, though very dark in color, and not as fine in grain and taste as that from clover, is greatly esteemed. Again, buckwheat is very valuable to the farmer as a reclamer of soil, both on account of its "weeding" properties, and its value as a fertilizer when plowed under. A crop of this plant will thoroughly kill off weeds, even the Canada thistle, by its quick growth and ample shade. Escaping from cultivation it has become naturalized in many localities, flowering from June to September, and fruiting as it flowers.

The medical history of this plant is not extensive, the only previous uses of importance, as far as I can determine, are those of an infusion of the herb in erysipelas, and an application of the flour, made into a paste with buttermilk, as a poultice to bring back the flow of milk to the breasts of nurses.

The plant is officinal in none of the Pharmacopoeias except the Homœopathic.

PART USED AND PREPARATION.—The fresh, mature plant and its seed is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, pour it into a well-stoppered bottle, and let it stand eight days in a dark, cool place. The tincture, separated from this mass by filtration, should have a deep crimson color by transmitted light, and a slightly acid reaction.

CHEMICAL CONSTITUENTS.—Many analyses of the ash of this herb have been made, but so far none to determine an active principle. The following analyses will serve to show the general constituents of the plant:

<table>
<thead>
<tr>
<th></th>
<th>Straw (Wolf)</th>
<th>Seed (Salisb'y)</th>
<th>Seed (Wolf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonic acid</td>
<td></td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>Silica</td>
<td>5.5</td>
<td>1.95</td>
<td>0.3</td>
</tr>
<tr>
<td>Sulphuric acid</td>
<td>5.3</td>
<td>1.55</td>
<td>2.1</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>11.9</td>
<td>48.95</td>
<td>48.0</td>
</tr>
<tr>
<td>Lime</td>
<td>18.4</td>
<td>3.01</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Straw (Wolf)</td>
<td>Seed (Salisb'y)</td>
<td>Seed (Wolf)</td>
</tr>
<tr>
<td>Magnesia</td>
<td>3.6</td>
<td>15.84</td>
<td>13.4</td>
</tr>
<tr>
<td>Potash</td>
<td>46.6</td>
<td>21.27</td>
<td>23.1</td>
</tr>
<tr>
<td>Soda</td>
<td>2.2</td>
<td>2.32</td>
<td>6.2</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7.7</td>
<td>.80</td>
<td>1.7</td>
</tr>
<tr>
<td>Organic acids</td>
<td></td>
<td></td>
<td>2.75</td>
</tr>
</tbody>
</table>

Mr. Salisbury's proximate analyses* of the seeds gave: Starch, 42.47, sugar and extractive matter, 6.16, gum, 1.60, a light-gray matter insoluble in water and hot alcohol, 10.10, a matter insoluble in water and soluble in alcohol, 2.66, and other common constituents of plants.

Indican.†—This glucoside has been determined in small percentage (Wittstein).

PHYSIOLOGICAL ACTION.—Although we have a good proving of this drug by Dr. Dexter Hitchcock, we have no record of the effects of the substance in

† See Baptisia tinctoria, 42.
quantity. Many individuals cannot partake of breakfast-cakes made from the flour of the seeds without experiencing a severe itching, especially observed about the large joints; a peculiarity of this itching is that it occurs particularly after removal of the clothing, and when first retiring at night. The eruption incident to, and following this itching, takes the form of vesicles, which degenerate into dry, dark-colored, tedious scabs. Another symptom arising, is a glutinous condition of the otherwise natural feces, making expulsion quite difficult. Increased urinary discharge is also present in many cases.

Description of Plate 142.

1. Top of plant; Chemung, N. Y., Sept. 3d, 1879.
2. Flower (enlarged).
3. Fruit (slightly enlarged).
4. Section of the seed (enlarged).
Rûmex Crîspus, Linn.
RUMEX.

YELLOW DOCK.

SYN.—RUMEX CRISPUS, LINN.

COM. NAMES.—YELLOW DOCK, CURLED DOCK, GARDEN PATIENCE, NARROW DOCK, SOUR DOCK; (FR.) PATIENCE FRISÉE; (GER.) KRAUSER AMPFER.

A TINCTURE OF THE FRESH ROOT OF RUMEX CRISPUS, LINN.

Description.—This smooth, perennial herb, grows to a height of from 2 to 4 feet. Root deep, large, spindle-shaped, and yellow without and within; stem erect, sulcate, smooth, panicularly branching above. Leaves all lanceolate, acute, and wavy-curved on the margins, the lower large, tufted, and more truncate than cordate at the base, the upper lanceolate, acute at both ends; petioles present with all the leaves, but very long in the lower. Inflorescence in prolonged, wand-like racemes, somewhat leafy below; flowers crowded in whorls along the rachis; pedicels filiform. Valves prominently reticulate, rounded, cordate, obscurely denticulate or entire, mostly all of them grain-bearing. Achenia acuminate, brown, and shining.

Rumex.—This genus of coarse, homely herbs is characterized as follows: Leaves alternate, none of them halbred-shaped; petioles somewhat sheathing at the base. Inflorescence in crowded whorls, along paniced racemes; flowers small, greenish, perfect or monoecciously polygamous; pedicels jointed near the base. Calyx of 6 herbaceous sepal, the 3 outer reflexed, sometimes united at the base, spreading in fruit, the 3 inner (valves) larger, veiny, somewhat colored, increasing after flowering, and converging over the fruit, often bearing a grain-like tubercle upon the dorsal surface of the midrib near its base. Stamens 6, inserted in pairs opposite the external sepal; anthers erect. Ovary triquetrous; ovule sessile; styles 3; stigmas tufted. Fruit a 3-angled achene; embryo slender, slightly curved, and lying along one side of the farinaceous albumen; cotyledons narrow, incumbent; radicle pointing upward.

History and Habitat.—The Docks are some of our most troublesome weeds imported from Europe. The Yellow Dock grows in cultivated ground, and along roadsides, everywhere in the eastern section of the United States; where it flowers from May until August, and ripens its copious seeds from August to October. The root has been used in medicine from ancient times, as a mild astringent tonic, laxative, and depurant, its use being similar to that of rhubarb and of sarsaparilla. A decoction of the root has been found useful in dyspepsia, gouty tendencies,

* Derivation unknown.
hepatic congestion, scrofula, syphilis, leprosy, elephantiasis, and various forms of scabby eruptions. An ointment of the powdered root with lard, or a cataplasm with cream, has been considered a specific for the cure of itch, and a useful application to cancers, as well as a discutient for indolent glandular tumors. Whatever use the root may have in these latter troubles must reside in the peculiar acid contained in it. Rumex is also considered an excellent dentifrice, especially where the gums are spongy.

As a pot-herb the young root-leaves of the Narrow Dock are well known in all country localities.

The officinal preparation in the U. S. Ph. is *Extractum Rumicis Fluidum*; in the Eclectic Dispensatory the following are recommended: *Decoctum Rumicis; Extractum Rumicis Alcoholicum; Syrupus Rumicis Compositus;* ‡ *Tinctura Corydalis Compositus.*

PART USED AND PREPARATION.—The fresh root, gathered after the fruit is ripe, but before frost has touched the plant, is treated as directed under the herb Polygonum.‡ The resulting tincture has a clear madder color by transmitted light; a peculiar sour, mousy odor, that I have also noted in Oxalis; a sourish, astringent, and slightly bitter taste; and a strong acid reaction.

CHEMICAL CONSTITUENTS.—*Chrysophanic Acid,* or *Rumicin,* C₁₄H₁₆O₄. This dioxyanthraquinone was discovered by Rochelder and Heldt (1843) in the yellow lichen (*Parmelia parietina*),§ and afterward recognized as such in rhubarb|| by Schlossberger and Döpping (1844). It has since been found also in Rumex,¶ Cassia bijuga, and goa powder (*Andira Araroba*).** It crystallizes in tasteless, golden-yellow needles or tablets, fuses at 162° (323.6° F.), and sublimes with little change on careful heating. It is slightly soluble in hot water, also in alcohol, and dissolves quite readily in ether. This acid acts as a rubefacient and discutient, and is a valuable agent for destroying parasites of the skin.

The plant also contains sugar, gum, albumen, and tannin.

PHYSIOLOGICAL ACTION.—Rumex causes nausea; watery brown movements of the bowels, urging liquid passages; urging, copious urination; dry, spasmodic, irritating cough; sore, burning, aching, and sticking pains in the chest; increased heart’s action; restlessness; itching of the skin; sleeplessness; chills, fever, and perspiration.

DESCRIPTION OF PLATE 143.

1. End of a fruiting branch, Binghamton, N. Y., Aug. 20th, 1886.
2. Outline of a lower leaf.
3. Fruit.
4. Valve.
5. Achenium.

(3–5 enlarged.)
Rumex Obtusifolius, Linn.
LAPATHUM.

BITTER DOCK.

SYN.—RUMEX OBTUSIFOLIUS, LINN.; R. DIVARICATUS, ELL.; LAPA-
THUM ACUTUM.

COM. NAMES.—BITTER DOCK, BLUNT-LEAVED DOCK; (GER.) GRIND-
WURZ.

A TINCTURE OF THE ROOT OF RUMEX OBTUSIFOLIUS, LINN.

Description.—This roughish perennial weed is of similar growth to the pre-
ceding species. Root brownish, thick, and branching; stem angular and sulcate.
Leaves rather downy upon the veins underneath and somewhat wavy margined;
the lower ovate, cordate, mostly obtuse; the upper lanceolate and acute at both
ends. Flowers in loose and distant whorls below, more crowded above; pedicels
recurved. Valves ovate-hastate, strongly reticulate, with a few sharp, awl-shaped
teeth at the base, one of them principally grain-bearing. (Read description of
Rumex, page 143.)

History and Habitat.—The Bitter Dock is in Europe a domestic weed of the
worst description—a trait that well characterizes its naturalized state here, where
it has rapidly spread wherever man has settled, defacing his fields, gardens, and
lawns. It is much harder to exterminate than R. crispus, on account of its branch-
ing roots, which, like the star-fish, will increase and multiply the faster if broken,
cut, or bruised. It flowers a month later than the yellow dock, and fruits at the
same period.

The use of this species in medicine is not so prominent as that of R. crispus,
though it is more bitter, and, if anything, more common. "A decoction of bitter
dock root is highly efficacious in obstinate cases of the kind of skin disease called
ichthyosis; and when taken in large quantity—as well, indeed, as the decoction
of any of the fusiform dock roots—it acts as a purgative, in the same manner as
the powder or tincture of Turkey rhubarb."*

The following European and American species of the genus manifest, with
R. obtusifolius, a certain line of generic usefulness: Water Dock (R. aquaticus);
Yellow Water Dock (R. Britannica); and Sharp Dock (R. acutus). The common
Horse Sorrel (R. acetocella) is refrigerant, diuretic, and antiscorbutic—characters
which also pervade R. acetosa, which yields, in Switzerland, part of the Oxalic Acid
of commerce. R. acetosa is also highly esteemed in many districts as an esculent,

* Wilson's Rural Cyc.
than which, however, $R. \textit{scutans}$ is much more delicate; both are unhealthy if used to excess. In France $R. \textit{patientia}$ is considered tonic, stomachic, and depurant; while the Alpine Dock, or Monk's Rhubarb ($R. \textit{alpinus}$) is the most active of all species, possessing qualities very like those of $Rheum \textit{Rhaponticum}$, for a variety of which, indeed, Linnaeus mistook it, adding, however, to his observations, "\textit{easdem esse species nullus quidem neget, qui structuram plantae utriusque inspexerit.}"

PART USED AND PREPARATION.—The fresh root, gathered and prepared as in the preceding species, yields a tincture having a dark, reddish-brown color by transmitted light; a sourish odor; a bitterish astringent taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—\textit{Lapathin}, a body identical with Chrysophanic Acid, as described under $R. \textit{crispus}$; a resin; albumen; sugar; gum; starch; and sulphur, have been determined in the root of this species.

PHYSIOLOGICAL ACTION.—The symptoms caused during the experiments of Dr. Widenhorn* are substantially as follows: Pressive headache; epistaxis; distension and pressure in the stomach and abdomen, with flatulence; pain and pressure in the kidneys; weariness and bruised pains in the limbs; and excessive coldness of the feet.

DESCRIPTION OF PLATE 144.

1. End of a flowering branch, Binghamton, N. Y., Aug. 20th, 1886.
2. Outline of a lower leaf.
3. Flower, showing calyx.
4. Face of flower.
5. Stamen.
6. Pistil.
7. Fruit.
9. Seed.
10. Horizontal section of seed.

(3-10 enlarged.)

Archiv. de la Med. Hom., 1835, 305.
Líndera Benzòin, Meisner.
N. ORD. LAURACEÆ.

GENUS.—**LINDERA;** THUN.
SEX. SYST.—ENNEANDRIA MONOGYNIA.

BENZOIN.

SPICE-BUSH.

SYN.—**LINDERA BENZOIN, MEIS.**; **LAURUS BENZOIN, LINN.**; **BENZOE ODORIFERUM, NEES**; **LAURUS PSEUDO-BENZOIN, MICHX.**

COM. NAMES.—COMMON **SPICE-BUSH, ALLSPICE-BUSH, BENJAMIN-BUSH, WILD ALLSPICE, FEVER-BUSH, SPICE-BERRY;** (FR.) **LAURIER BENZOIN;** (GER.) **BENZOELOREBOER.**

A TINCTURE OF THE FRESH YOUNG TWIGS OF LINDERA BENZOIN, MEIS.

Description.—This aromatic shrub grows to a height of from 6 to 18 feet. *Branches* smooth and maculate. *Leaves* deciduous, nearly glabrous, thin, pale beneath, oblong-ovate and acute at both ends. *Inflorescence* lateral, nearly sessile, umbel-like clusters, composed of umbellets of 4 to 6 flowers; *involucre* formed of 4 deciduous scales surrounding the flowers; *flowers* numerous, polygamous-dieicious, prefolial. *Calyx* open, honey-yellow, 6-parted, membraneous. *Stamens*: sterile *flowers* 9, in 3 rows; *filaments* of the *inner row* dilated and 1 to 2 lobed, bearing at the base a reniform and more or less peltate gland (Fig. 4); the external 6 simple; *anthers* 2-celled and -valved, opening upward to the apex; *fertile flowers*: *stamens* 15 to 18 rudimentary, some filiform and pointed, others more or less spatulate. *Ovary* globular or globose-ovoid; *style* short; *stigma* capitellate. *Fruit* a scarlet, ovoid drupe.

Lauraceæ.—A family of aromatic trees or shrubs widely distributed over the temperate and tropical portions of the globe. *Leaves* alternate, simple, entire or sometimes lobed, mostly having pellucid dots. *Flowers* clustered; *estivation* imbricate in 2 rows; *calyx* regular, free from the ovary; *sepals* 4 to 6, petaloid, mostly fewer than the stamens. *Anthers* opening by 2 to 4 uplifting valves. *Ovary* 1-celled, 1-ovuled; *style* single. *Fruit* a 1-seeded berry or drupe; *seed* anatropous, suspended; *albumen* wanting; *embryo* large amygdalaceous.

We derive but two other remedies from this order, viz.: Camphor, the Chinese and Japanese *Laurus camphorifera* (*Cinnamomum Camphora, Camphora officinarum*); and Cinnamon, the Ceylon *Cinnamomum Zeylandicum* (*Laurus Cinnamomum*). The other products of this order are: Cassia buds, the dried, undeveloped flower buds of the cinnamon tree; Cassia bark (*Cinnamomum aroma-*)

* John Linder, a Swedish botanist of the 18th century.
ticum); Sassafras (Sassafras officinale, Laurus Sassafras); and Sweet bay (Laurus nobilis), so celebrated by poets for its fragrance and beauty. The genus Oreadodaphne yields: Jamaica sweetwood (O. exaltata); Canary Island Til (O. fietens); Isle of France Cinnamon (O. cupularis); a Brazilian discutient (O. opifera); and a native species much used by the Californian Indians in cephalalgia, and destined to become one of our valuable remedies (O. Californica). The genus Nedajidra affords the much-vaunted substitute for Quinia, sulphate of Berberia, a product of N. radial, now falling into disuse; Santa Fe Cinnamon (N. cinnamonoides); Orinoko Sassafras (N. cymborum); the Brazilian Pichurim bean (N. puchury); and the Sassafras nuts of the London markets (N. puchury minor). Among all the products of this varied family one only is really edible, viz.: the West Indian Avocado Pear (Persea gratissima).

History and Habitat.—The spice-bush, so well known among the laity on account of its aromatic buds, bark, and berries, inhabits low marsh spots upon the banks of streams from Canada southward to Florida. It blossoms in March or April, before the leaves appear.

The economical use of this shrub has given it many of its vulgar names. During the war of the Revolution the Americans used the powdered berries as a substitute for allspice (Barton). During the war of the Rebellion the people of northern South Carolina used the leaves as a substitute for tea, they affording a pleasant antipyretic and aromatic drink (Porcher); and the berries as before mentioned. In domestic practice the bark, leaves, and berries have been used in decoction to produce diaphoresis and act as a febrifuge; they were considered also as tonic, stimulant, antiperiodic, and anthelmintic. The oil of the berries was often used as an embrocation in neuralgic and rheumatic pains.

There are now no preparations in use officinally except the Homœopathic tincture.

PART USED AND PREPARATION.—The fresh, young twigs gathered before the buds have burst in the spring, are chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well, pour it into a well-stoppered vial, and allow it stand for eight days in a dark, cool place.

The tincture separated from the above mass by filtration has a light-brown color by transmitted light, an aromatic odor and taste, and a slight acid reaction.

CHEMICAL CONSTITUENTS.—Three analyses have been made of this plant* to determine its active principle, resulting in the separation of a volatile oil, tannin, an essential oil, a tasteless resin, together with other unimportant and general plant constituents. Its medicinal properties, in all probability, lie in the oils, one being cinnamyl compound, the other a substitution product of benzene.

* A. Brockenbrough, Jun., “An Experimental Botanico-chemical essay on Two Native Species of Laurus,” 1804; American Journal of Pharmacy, 1873, J. M. Jones; 1875, P. M. Gleim.
Description of Plate 145.

1. Flowering branch from Binghamton, N.Y., May 3d, 1884.
2. End of branch in leaf.
3. A flower in section.
4. A stamen of the outer row.
5. Pistil.
6. Pollen x 380.
 (3-5 enlarged.)
DIRCA PALÜSTRIS, Linn.
N. ORD.—THYMELEACEÆ.
GENUS.—DIRCA,* Linn.
SEX. SYST.—OCTANDRIA MONOGYNIA.

DIRCA PALUSTRIS.

LEATHERWOOD.

SYN.—DIRCA PALUSTRIS, Linn.
COM. NAMES.—LEATHERWOOD, MOOSEWOOD, WICOPY, ROPE BARK, SWAMPWOOD, THONG BARK, AMERICAN MEZEREON; (FR.) BOIS DE PLOMB;† (GER.) LEBERHOLZ.

A TINCTURE OF THE FRESH INNER BARK OF DIRCA PALUSTRIS, LINN.

Description.—This yellowish, largely-branching shrub, attains a height of from 3 to 6 feet. Stem erect; wood white, soft and brittle; bark remarkably tough and fibrous; branchlets jointed; buds made up of 3 or 4 large, oval, sometimes persistent, dark hairy scales, from which spring the flowers, leaves, and shoots of the season. Leaves alternate, oval-ovate or ovate-lanceolate, deciduous, short petioled, villous when young and smooth when old. Inflorescence terminal ternate clusters, those not terminal at the flowering season become so by the extension of the young shoots; flowers pendent, honey-yellow, slightly sweet-scented, preceding the leaves. Calyx petaloid, funnel-form; limb truncate, crenate or nearly 4-toothed. Stamens 8, exserted, alternately longer, inserted upon the edge of a disk that encircles the calyx-tube at its point of inflation, and furnished with alternate, small, subulate appendages at their insertion; filaments long and slender. Ovary ovoid; style lateral, filiform, more than twice the length of the stamens; stigma capitate. Fruit a cluster of three, reddish, ovoid, mucronate, baccate drupes; seeds large; albumen papyraceous.

Thymeleaceæ.—This small family consists of shrubs having an acrid, tough and fibrous bark. Leaves entire; stipules wanting. Flowers perfect. Calyx regular, petaloid, free from the ovary; limb 4- rarely 5-lobed, imbricate in aestivation. Stamens usually twice as many as the lobes of the calyx. Ovary 1-celled; style single, lateral, rarely terminal. Fruit a baccate, 1-seeded drupe; seed suspended, anatropous; embryo large; albumen thin or wanting.

The only genus of this family that is of special interest to us, besides the one under consideration, is Daphne, of which we use: mezereon (Daphne mezereum, Linn.), and the sweet-scented spurge laurel (Daphne Indica, Linn.). The economical history of this order is nevertheless interesting, from the varied uses of the species, principally on account of their tough bark. They are mostly indigenous to northern India, South America, and the Cape of Good Hope. The family fur-

* Διρκή, Dirke; the name of a Thebian fountain; probably on account of the habitat of the plant.
† Lead wood, on account of its flexibility.
nishes a yellow dye for woolens (*Passerina tinctoria*), a pulp for manufacture into paper (*Dais Madagascanensis*), a lace-like material for ropes in the West Indies (*Lagetta lintearia*), and in Madagascar (*Gnidia daphnoides*). Medically it furnishes a Javanese purgative (*Dais octandrid*), a Cayenne laxative (*Hernandia Guianensis*), an Indian purgative, depilatory, and antidote to poisons (*Hernandia sonora*), and an edible nut (*Inocarpus edulis*) in the South Sea Islands, said to be similar in taste to the chestnut; this latter is an exception, as the fruits of the thymeleaceae are generally deleterious. In general the fresh bark is possessed of a caustic acridity, and when applied to the skin acts as a painful vesicant.

History and Habitat.—The Leatherwood is indigenous to North America, growing in swampy or springy woods from Canada to Georgia, east of the Alleghany Mountains; it flowers with the maples in April, before the appearance of the leaves. The fibrous bark afforded material for ropes, thongs, cordage, and baskets, to the American aborigines.

The medical history of this drug is slight, the only reference to its use is that of the Indians as a masticatory for aching, carious teeth.

PART USED AND PREPARATION.—The fresh inner bark of the twigs is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After careful mixture the whole is poured into a well-stoppered bottle and allowed to stand eight days in a dark, cool place.

The tincture, separated from the above mass by filtration, has a clear, greenish, orange-brown color by transmitted light, retains the peculiar odor of the bark, has a sourish then burning taste, and a neutral reaction.

CHEMICAL CONSTITUENTS.—The only attempt at an analysis of this plant, as far as I am able to determine, is that of Dr. Bigelow and his pupil, Dr. Locke. They found that the acridity of the fresh bark was not retained in a distillate or decoction, and determined the presence of:

A bitter resinoid, soluble in alcohol; and an

Acrid principle. This body is apparently fully retained in the tincture prepared as above.

PHYSIOLOGICAL ACTION.—Dr. Locke observes that the powdered root causes emesis and catharsis, and that the bark causes vesication; other observers, who have carried this application farther, find that sores follow that are difficult to heal. Dr. Perkins notes a case of poisoning with the fruit in which vertigo, nausea, stupor, insensibility, and dilatation of the pupils occurred.* The bark when chewed produces ptalism, burning in the fauces and stomach, and sometimes paresis of the tongue. Dr. Spooner's proving of the drug† substantiates the above, and leads us to the conclusion that Dirca acts as an irritant to the

mucous membranes of the gastro-intestinal tract and bladder, as well as to the nerves. This proves the drug to be quite similar to mezereum. It is to be deplored that the unripe fruits are not included in the preparation of the tincture; farther provings with a tincture thus prepared would add a valuable remedy to our store.

Description of Plate 146.

1. Flowering branch, Ithaca, N. Y., April 20, 1880.
2. A flower cluster (enlarged).
3. Half of flower (enlarged).
5. Branch in leaf and fruit.
6. Section of seed (enlarged).
7. Seed.
EUPHORBIA HYPERICIFOLIA, Linn.
EUPHORBIA HYPERICIFOLIA.

COMMON SPURGE.

SYN.—EUPHORBIA HYPERICIFOLIA, LINN.
COM. NAMES.—LARGE SPOTTED SPURGE, BLACK OR MILK PARSLEY OR PURSLANE, SPOTTED EYEBRIGHT; (GER.) JOHANNESKRAUT-BLATTRIGE WOLFSMILCH.

A TINCTURE OF THE WHOLE PLANT EUPHORBIA HYPERICIFOLIA, LINN.

Description.—This inconspicuous annual herb, attains a growth of from 8 to 18 inches. Stem ascending or erect, smooth or with scattered hairs, divergently branching and forking. Leaves ovate-oblong or linear-oblong, sometimes falcate, oblique, or slightly cordate at the base, acute, serrate, and short-petioled; stipules triangular, dentate. Inflorescence in loose, leafy, terminal cymes; peduncles longer than the petioles; flowers numerous. Involucral appendages 4, large and white or small and red. Ovary 3-celled, each cell 1-seeded. Fruit a glabrous, obtusely-angled pod; seeds blackish, ovate, obtusely 4angled, wrinkled, and tuberculated; caruncle none.

Euphorbia.—This genus consists of herbs or shrubs with a milky juice. Leaves alternate, or in a few cases opposite or scattered, the floral usually verticillate. Peduncles terminal, often umbellate-clustered. Flowers monoeious, included in a cup-shaped, 4- to 5-lobed involucre, resembling a calyx or corolla, and generally having large thick glands at its sinuses; glands with or without petaloid margins; sterile flowers numerous, lining the base of the involucre, each from the axil of a little bract, and consisting of a single stamen jointed on a pedicel-like filament; anthers with globular cells; fertile flowers solitary, in the centre of the involucre, soon, however, protruded upon a long stipe, and consisting of a 3-lobed, 3-celled ovary with no calyx; styles 3, each 2-cleft; stigmas 6. Fruit a compound capsule of 3 carpels, each of which splits elastically into 2 valves. Seeds often caruncled, and closely invested in a membranous axil.

Euphorbiaceae.—This vast family of mostly tropical plants is represented in North America by 18 genera, 171 species, and 15 varieties, and is characterized

* Euphorbus, physician to Juba, king of Mauritania.
as follows: Herbs, shrubs, or trees, with milky, acrid, and mostly poisonous juice. Leaves commonly simple; stipules present. Inflorescence various; flowers monocious or dioecious, sometimes achlamydeous, often with scaly or gland-like appendages. Calyx 3-several cleft or wanting. Petals mostly wanting. Stamens one or many, distinct or monadelphous; anthers 2-celled. Ovary free, usually 3-celled; ovules usually single, sometimes two, hanging from the summit of each cell; stigmas as many or twice as many as the cells of the ovary. Fruit generally a 3-lobed capsule; carpels separating elastically from the persistent axis, and elastically splitting into two valves. Seeds anatropous; embryo straight, axial; albumen fleshy and oily.

Beside the five species treated of in this work, we have provings of sixteen other plants of this order, viz.: The Indian Cúpameni (Acalypha Indica, Linn.); the European and Asiatic Box (Buxus sempervirens, Linn.); the Spanish Cascarilla, the bark of Croton Eleuteria, Bennett; Cassada, the root of the Brazilian Jatropha manihot, Linn.; Croton Oil, a product of the seeds of the India and Ceylon Croton Tiglìum, Lam.; the English Spurge (Euphorbia amygdaloides, Linn.); the Cypress Spurge of England, E. cyparissias, Linn.; the British Petty Spurge (E. Peplus, Linn.); Euphorbium, the resinous exudation of the North African E. resinifera, Berg.; Assacu, the juice of the Brazilian Hura Braziliensis, Willd.; the Cuban Physic Nut (Jatropha Curcas, Linn.); the Brazilian Stinging Physic Nut (J. urens), considered to be the most poisonous plant known; the European Dog’s Mercury (Mercurialis perennis, Linn.); the West Indian Manzanillo (Hippomanes Manzinella, Linn.), under the shade of which men are said to die; and Castor Oil, the expressed oil of the seeds of Ricinus communis, Linn.

Among the numerous other plants of the order used in general practice, the following will prove of special interest: The Oriental Kamela (Mallotus philippensis, Müll.), a purgative noted as a tænicide; the Indian sudorific and cathartic, Cicca disticha, Willd.; and Emblica officinalis, Gaertn. The root and leaves of the Indian and South American Phyllanthus Niruri, Linn., are considered deobstruent and diuretic, a decoction of the leaves and seeds is said by Martius to be considered a specific cure for diabetes in Brazil; the Indian P. urinaria, Linn., is also a powerful diuretic; while P. virosus, Willd., of the same country, is used to intoxicate fish. The seed-coat of the Indian Cluytia callina, Roxb., is claimed to be powerfully toxic; and the bark of C. spinosa, Roxb., is astringent and vermifugal. Turnsole is a purple dye procured from the Mediterranean acrid and corrosive drastic Croton tinctorium, Linn.; Mexican Cascarilla, or Copalchi, is the bark of Croton Pseudo-China, Schl.; the Indian C. Pacana, Hamilt., is used as a producer of Croton Oil, and is supposed to be the original Tilly-seed; one of the finest kinds of Dragon’s blood, is derived from the Mexican C. Draco, Schl.; this substance is also obtained from the New Granadian C. hibiscifolius, H. B. K., and C. sanguifolius, H. B. K., of New Andalusia; several other cathartics, or, more properly, purgatives, are derived from this genus, of which the Ceylon C. lacciferum, Linn., and C. suberosum, H. B. K., of Peru, are prominent; in Brazil C. campestris, C. antisiphiliticum, and C. pardicipes, St. Heil., are used in syphilis; and C. origanifolius is said to yield a balsam that greatly resembles Copaíva.
The seeds of the Tropical American *Jatropha multifida*, Linn., are an excellent emetic and purgative; the juice of the Indian *J. glandulifera*, Roxb., is said to be used by the Hindoos as an escharotic to remove films from the eye; and the oil of the seeds of *J. glauca*, Vahl., is used as an application in rheumatism.

The flowers of the East Indian *Catusus spiciflorus*, Linn., are said to be a specific in diarrhoea. The seeds of the Brazilian *Anda-açu* (*Anda Gomesii*, A. de J.) act as a very powerful but safe purgative. The Guayanian *Hovea Guianensis*, Aubl., furnishes Demerara and Surinam Caoutchouc. The roots of the Indian *Traga involucrata*, Linn., are said by Ainslie to be used by the Hindoo doctors to remove old syphilitic cachexias. The juice of the Ganges *Sapum Indicum*, Willd., is highly poisonous; while that of *S. acuparium*, Willd., is really venomous, its exhalations causing erysipelatous inflammation. The Tropical American Sandbox (*Hura crepitans*, Linn.) yields a juice that is exceedingly poisonous; it is said to produce blindness in a few days after application to the eyes; the seeds are a dangerous purgative. Another plant, similar in its action, is the Indian *Euxacaria Ayallocha*, Linn., of which Rumphius says that sailors who were sent ashore in Amboyna to cut wood, sometimes became furiously mad from pain produced when the juice of this plant spattered in their eyes, and that some cases of blindness resulted. The Cochin-China *Commia Cochinchinensis*, Lour., yields an emetic and purgative gum; and the West-Indian Jew-bush (*Pedilanthus thymaloides*, Poit.) is used in venereal complaints, amenorrhoea, and in lieu of Ipecacuanha.

The genus Euphorbia, the type of this order, is one of the largest purgative genera known, many of its species being dangerous, and all more or less active. The Indian *E. Tirucalli*, Linn., is a violent and dangerous cathartic, used also, in small doses, as an antisypilitic; the Cape *E. heptagona*, Linn., is said by Virey to be used by the Ethiopians as an arrow-poison; *E. tribuloides*, Linn., of the Canary Islands, is said to be sudorific, and *E. Canariensis*, Linn., to act much like Gum Euphorbium; the Indian *E. ligularia*, Roxb., is claimed to be alexiteric, and *E. nereifolia*, Linn., diuretic; the European *E. esula*, Linn., is a dangerous poison, *E. Gerardiana*, Lacq., emetic and cathartic, *E. falcula*, Linn., purgative, and *E. Peplis*, Linn., of like action; the Indian *E. thymifolia*, Linn., is anthelmintic, while the juice of the Brazilian *E. linearis*, Retz., is said to cure wounds of the cornea directly it is applied.

Although we have found this order so highly active and so many of its species veritably toxic, especially the seeds, still it produces one of the finest of all edible nuts—the Tropical American *Omphalea triandra*, Linn.

History and Habitat.—The Common Spurge is indigenous to North America, its typical form being found in the West Indian Islands. It grows generally throughout the country in dry fields, cultivated grounds, and on hillsides, where it flowers from July to September.

This species was probably first introduced in medicine by Dr. Zollickofer, who spoke of it as astringent and slightly narcotic, and recommended its use in menorrhagia, leucorrhoea, cholera infantum, diarrhoea, and dysentery; Rafinesque adds to this that the plant is also purgative. Martius claims that the plant is valuable in syphilis and ulcerations of the cornea.
PART USED AND PREPARATION.—The whole fresh plant is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, it is poured into a well-stoppered bottle, and allowed to stand eight days in a dark, cool place.

The tincture, separated from this mass by filtration, has a deep orange-red color by transmitted light; a sweetish vinous odor; an acrid, astringent, and slightly bitter taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—No analysis of this species has been made that identified a special principle. The constituents of the Euphorbias of this country are probably much alike in all species, and, therefore, refer to \textit{E. Ipecacuanhae}, page 149-2.

PHYSIOLOGICAL ACTION.—Dr. True,* who took a half-pint of an infusion of one-half an ounce of the dried herb in a pint of water, experienced the following effects: Headache with frontal fulness and heat; heat about the eyes; languor and drowsiness; oppression of the stomach; and constipation. The juice applied to the eyes causes severe irritation, with smarting and burning, lachrymation, and momentary blindness; this we have experienced twice while gathering the plant. It is supposed that this species causes the affection in horses called "slabbers."

The Euphorbias in general are severe irritants of mucous membranes, upon which they act as acrid poisons.

\textbf{Description of Plate 147.}

1. Portion of a branch in fruit, Binghamton, N. Y., Sept. 6th, 1885.
2. A portion of the stem, showing method of branching, stipules, and petioles.
3. A leaf, showing obliquity.
5. Fruit.
6. Horizontal section of fruit.
7. Seed.

(5-7 enlarged.)

EUPHÓRBIA COROLLÁTA, Linn.
N. ORD.—EUPHORBIACEÆ.

GENUS.—EUPHORBIA, LINN.

SEX. SYST.—MONOECA MONADELPHIA.

EUPHORBIA COROLLATA

FLOWERING SPURGE.

SYN.—EUPHORBIA COROLLATA, LINN.; TITHYMALUS MARINUS, PLUK.

COM. NAMES.—FLOWERING SPURGE, BOWMAN'S ROOT, BLOOMING SPURGE, WANDERING MILKWEED, SNAKE'S-MILK, INDIAN PHYSIC, LARGE FLOWERED SPURGE, WILD HIPPO, WILD IPECAC; (FR.) EUPHORBE À GARNDES FLEURS; (GER.) GROSSBLÜTHIGE WOLFSMILCH.

TINCTURE OF THE FRESH ROOT OF EUPHORBIA COROLLATA, LINN.

Description.—This erect perennial herb attains a growth of from 2 to 4 feet, appearing to an observer at a distance to be a member of the umbelliferae. The root is large and branching, sending up a number of simple rounded stems glabrous or sometimes sparingly hairy. Leaves ascending, those of the stem alternate, of the pedicels opposite, and whorled only at the base of the inflorescence; all ovate-lanceolate or linear, entire, obtuse, equal at the base, sessile or nearly so, smooth above, slightly hairy beneath, from one-half to two inches long, and one-quarter to one-half inch wide. There are always as many leaves to the inflorescence as there are peduncles or pedicels, and situated at their bases. Stipules none. Peduncles generally 5, sometimes fewer, pedicels and their branches many, all forming a compound umbel-like bi-sexual inflorescence. Involucres (floral) numerous, each with 5 showy, obovate, petal-like false lobes; the true lobes minute, inflexed, alternate with the false, and cut into 2 deep, narrow, lanceolate laciniae. Fertile flowers solitary, one to each umbellet, at length protruding beyond its corolla-like involucre. Ovary stalked, 3-lobed, 3-celled, each cell 1-seeded. Style 3-branched. Stigmas 6, a pair to each branch of the style. Sterile flowers numerous, their many stamens successively developing singly, or in pairs or trios. Filaments stalk-like, surmounted by twin anthers with globular cells. Fruit a smooth 3-carpelled, 6-valved pod. Seeds thick, ashen, with a nearly even surface. The natural order is described under E. hypericifolia, 147.

History and Habitat.—The flowering spurge is a favorite medicine among the aborigines of America, being used as a purgative; its action as such

* Euphorbus (physician to King Juba), who introduced Euphorbia.
fully warranting the favor it has received. The milky juice that flows freely from the wounded plant is an active irritant, causing vesication soon after its application to the skin. The plant grows rather sparsely in dry meadows and open woods in Canada and central United States, blossoming from June to September. E. corollata has been dismissed from the U. S. Ph. (1882); in Eclectic practice use is made of the powdered bark of the root, in doses of from 4 to 30 grains.

PART USED AND PREPARATION.—The fresh root gathered in the fall, is chopped and pounded into a pulp and weighed, then two parts by weight of alcohol are taken and the pulp thoroughly mixed with one-sixth part of it and the rest of the alcohol added. After having stirred the whole well, pour it into a well-stoppered bottle and allow it to stand eight days in a dark, cool place. The tincture is then separated by decanting, straining and filtering.

Thus prepared it has a clear, light-yellow color by transmitted light, no distinguishing odor, a sweetish or mawkish taste, leaving a sensation of fuzziness upon the tongue, and a decided acid reaction.

CHEMICAL CONSTITUENTS—At the present we can do no better than to refer to E. hypericifolia, 147, for the chemistry of this plant, for so far only the generic qualities have been determined, no distinct and specific analysis having been made.

PHYSIOLOGICAL ACTION.—The action of the Euphorbias generically will be found under 147, the specific physiological action of E. corollata is so far little investigated. The minute effects can best be determined by consulting the provings contained in the Encyclopaedia of Materia Medica, by Dr. T. F. Allen, vol. iv., p. 244.

DESCRIPTION OF PLATE 148.

1.—1a. Whole plant from the banks of the Chemung River, its principal habitat east. Elmira, N. Y., July 19, 1879.

2. Stamen (enlarged).
3. Sterile flower (enlarged).
4. Pistil (enlarged).
5. Fruit (enlarged).
EUPHORBIA IPECAUCANHÆ.

AMERICAN IPECAC.

SYN.—EUPHORBIA IPECAUCANHÆ, LINN.

COM. NAMES.—AMERICAN IPECAC,* WILD IPECAC,† CAROLINA IPECAC, IPECAUCANHA SPURGE, CAROLINA HIPPO; (FR.) EUPHORBE VOMITIVE; (GER.) BRECHWOLFSMILCH.

A TINCTURE OF THE WHOLE FRESH ROOT OF EUPHORBIA IPECAUCANHÆ, L.

Description.—This tufted, shrub-like perennial grows to a height of from 6 to 12 inches. Root long, perpendicular, thick, subcylindrical, branching; stems many from the same root, erect or more frequently diffusely spreading, divergently forking throughout; leaves opposite, entire, glabrous, varying from obovate-oblong to narrowly-lanceolate, all very short petioled, and varying in color from shining green to brilliant red. Inflorescence on long peduncles arising from the forks; involucres 4 to 5 lobed; lobes ovoid; glands 5, obtuse, somewhat reniform, exappendiculate. Fruit a long pedicelled, obtusely angled, nearly smooth pod; seeds ovate, white, sparsely pitted with impressed dots; caruncle none. Read the description of Euphorbia and Euphorbiaceae under E. hypericifolia, 147.

History and Habitat.—The Ipecac Spurge is indigenous to the low sandy soils of the Atlantic seaboard from Florida to Mississippi, and northward to Long Island. This very singular and extremely amorphous plant represents in itself seven "Rafinesquian species," so greatly does it vary in form, color, inflorescence, and leaf.

The emetic property of this root was well known to the Aborigines, but the first experiments with it in practice were those of Prof. Hewson and Dr. J. R. Barton, though the first mention of its emetic properties is that by Dr. Puihn. Shoepf adds nothing to what was already known; nor does Prof. Barton in his Collections. Prof. W. C. P. Barton considered it equal if not superior to imported Ipecacuanha.‡ Dr. Bigelow observes.§ from his own experiments and those of Dr. McKeen at his instigation, that the species is an active emetic, safe when prudently administered, but injurious to the nervous system, and wanting in the mildness that characterizes officinal Ipecacuanha. The dose of the powdered root is from 10 to 20 grains for its emetic action, which also at times proves cathartic, thus making it more active than Ipecacuanha in proportion to the amounts used. The American

* A name also applied to Gillena stipulacea, Nutt. (Rosaeæ.)
† Also applied to Gillena trifoliata, Moen. (Rosaeæ.)
Ipecac acts as a hydragogue, expectorant, diaphoretic or emetic, according to the size of the dose.

PART USED AND PREPARATION.—The fresh root, treated as directed under *E. hypericifolia*, yields a tincture having a clear, light lemon-yellow color by transmitted light, a sweetish odor, an acrid taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—No analysis yet made of this species has resulted in the separation of the glucoside it seems to contain. Dr. Bigelow’s analysis separated caoutchouc, resin, and mucus; to which Mr. Cullen adds, by analysis, coloring-matter and starch.

Euphorbon, C_{26}H_{44}O_{2}—By evaporating the tincture to an extractive mass, dissolving in alcohol containing caustic potash, evaporating, and neutralizing the residue with dilute acetic acid, a brown body was precipitated (Euphorbic acid). On digesting the menstruum, separated from this precipitate, in ether, and evaporating spontaneously, crystals were obtained; these recrystallized frequently, and, boiled in a slightly-colored solution of permanganate of potash, resulted as tasteless, colorless, imperfect crystals, insoluble in water, slightly soluble in alcohol, readily soluble in ether, benzol and chloroform; melting at 241° (116.1° C.); and answering to the tests for the Euphorbon of Flückiger.

Euphorbic Acid.—This amorphous, brown body, obtained as above, was slightly acrid, very bitter, soluble in water and alcohol, and capable of neutralizing slightly alkaline solutions.

The two bodies resulting as above were too small in quantity for experimentation in this analysis, as I had but little of the root in my possession. They are without a doubt identical with the bodies under which names I have described them, as given by experiments upon Gum Euphorbium from *Euphorbia resinifera*, Berg.

PHYSIOLOGICAL ACTION.—Euphorbia acts as an irritant to the mucous membranes throughout the alimentary tract, not only by its presence, but after the powder taken is all evacuated; vomiting once commenced is associated with vertigo, dimness of vision, flashes of heat and thirst; when the vomiting ceases, purging commences and lasts some time, often followed by prostration and cold sweat.

Description of Plate 149.

1 and 2. Flowering stems, Landisville, N. J., June 8th, 1885.
3. Flower and involucres.
4. Styles and stigmas.
5. Stamen.
7. A portion of the root.

(3-6 enlarged.)

EUPHORBIA LÁTHYRIS, Linn.
EUPHORBIA LATHYRIS.

CAPER SPURGE.

SYN.—EUPHORBIA LATHYRIS, LINN.; TITHYMALUS LATHYRIS, KL. & GAR.

COM. NAMES.—GARDEN SPURGE, CAPER SPURGE, MOLE PLANT OR TREE; (GER.) PURGIEKÖRNER.

A TINCTURE OF THE WHOLE PLANT EUPHORBIA LATHYRIS, LINN.

Description.—This glabrous annual or biennial plant attains a growth of from 2 to 3 feet. Stem erect, stout, and cylindrical. Leaves entire, opposite, decussate or strongly sessile, thick, linear-or oblong-lanceolate, pale. Inflorescence umbelli-form; umbels 4-rayed, then forking; leaves ovate, long pointed, and somewhat cordate at the base; involucral lobes deeply cleft into two pointed divisions; glands lunate, 2-horned; horns orange colored, obtuse. Filamental peduncles hairy: abortive stamens ligulate, hairy at the base. Stigmas recurved. Fruit a large, 3-car-pelled capsule, red in the sulci when immature, black throughout when ripe; carpels obtusely 3-angled; seeds carunculate.

History and Habitat.—The nativity of the Caper Spurge is doubtful; it is, however, probably indigenous to Eastern Europe and Great Britain. It is adventive in this country, especially in New Jersey and Eastern Pennsylvania, where it grows in dry, sterile places, and blossoms from July to September. Several of the European Spurges, brought to this country as garden-plants on account of their use as purges and their peculiar foliage, have run wild in many places. Three years ago we discovered in Vestal, N. Y., two large patches of the Mediterranean E. Niccensis (not before reported in this country); it still grows there, and is spreading luxuriantly as if thoroughly satisfied with its new home. E. cyparissias has escaped in many places in Broome County, N. Y., and flourishes finely wherever it grows.

The Caper Spurge is the Cataputia minor of old pharmacopoeias, and is one of the plants that Charlemagne ordered grown in every garden in France. The laity in England are said to use one capsule to cause catharsis, and the women, several to produce abortion. The oil of the seeds was probably first used by Calderini, in doses of from six to eight drops, as a cathartic; he was followed by Gounaud, and later by Bally; Frank suggested its employment in ascites, hyst eralgia, and taenia. Mr. Scattergood† tells us that the manufacturer of the oil

* Jour. de Phar., xi, 273.
† Phil. Jour. Phar., 1833, 124.
at Crosswick, N. J., claimed small doses, repeated if necessary at hourly intervals, act as a pleasant cathartic; but says that in his own experiments doses of from six to twelve drops invariably produced nausea and vomiting. The bark of the root has been found to produce emesis and catharsis. Rafinesque states that the pickling of the capsules as a substitute for capers in England was due to mistaking them for Capparis spinosa, the true caper; other authors, however, claim that the use of the fruit in this manner is intentional, and that the substitution is a passable one.

PART USED AND PREPARATION.—The whole plant, when half is in fruit, is treated as in the preceding species. The resulting tincture is bistre by transmitted light; it has an odor somewhat resembling spoiled oysters; a sweetish then bitterish, nauseous taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—No analysis has yet been made of this species that isolated an active principle. The seeds are said to yield about 44 per cent. of a clear, yellowish, heavy oil, that deposits a crystalline mass on standing. The activity of the oil seems to vary much with the locality in which the plant grows, it being far more active from seeds produced in this country than from those of England or France.

PHYSIOLOGICAL ACTION.—The following symptoms occur after ingestion of a number of the seeds: Brilliant, staring, wide-open eyes, dilated pupils; death-like pallor of the countenance; retching and vomiting; violent purgation, stools frequent, copious, and in some cases bloody; irregular pulse; whole body cold and rigid,* followed by heat and perspiration. M.M. E. Sudour and A. Caraven-Cachin state† that emesis always precedes purgation, and that the seeds have an irritating action upon the mucous membrane of the intestinal canal, principally in the larger intestines. They divide the effects into three stages: a, the cold stage, including vomiting and diarrhoea; b, the stage of excitation, including nervousness, vertigo, and delirium; γ, the stage of reaction, including heat and copious sweat.

DESCRIPTION OF PLATE 150.

1. A portion of the inflorescence in flower and fruit, from near a garden, Sept. 27th, 1885.
2. Summit of stem at the base of the inflorescence.
3. Involucre and contents.
4. Outer view of an involucral lobe.
5. Inner view of same.
6. Abortive stamen.
7. Sterile floret.
8. A stamen.
10. Under surface of a capsule separated from the axis.
11. A carpel.
12. Longitudinal section of a seed.
13. Horizontal section of a seed.

STILLINGIA SYLVÁTICA, Linn.
STILLINGIA.

QUEEN’S DELIGHT.

SYN.—STILLINGIA SYLVATICA, LINN.; SAPIUM SYLVATICUM, TORREY.
COM. NAMES.—QUEEN’S DELIGHT, YAW-ROOT, MARCORY, COCKUP-HAT, QUEEN’S ROOT; (FR., GBR.) STILLINGIE.

A TINCTURE OF THE ROOT OF STILLINGIA SYLVATICA, LINN.

Description.—This herbaceous perennial grows to a height of from 1 to 3 feet. Stems clustered, glabrous, upright, and umbellately branched; juice milky; root cylindraceous, thick and ligneous, extensively creeping. Leaves alternate, crowded, almost sessile, varying in form, from ovate and obovate, to oblong and lanceolate, all thick and fleshy, and acute at the tip; margin crenate-serrulate, with a gland in each serrature; stipules minute, setaceous. Inflorescence a dense, terminal, monoeccious spike; flowers destitute of petals or disk-glands. Sterile flowers in dense clusters of 5 to 10, arranged about the spike for nearly its whole extent, each cluster in the axil of a deltoid, scarious-marginated, acute bract, and laterally enclosed by two peculiar scutellate glands attached to the rachis by their centres; calyx cup-shaped, membranaceous, with a 2-cleft margin, the divisions imbricated in the bud; stamens 2, greatly exserted; filaments filiform, attached for nearly half their length below; anthers erect, 2-lobed, adnate and extrorse. Fertile flowers few, situated at the base of the spike in the axils of bracts similar to those of the sterile flowers; calyx 3-lobed; style thick, articulated below, stigmas 3, simple, diverging. Fruit a roundish, roughish capsule, composed of 3 1-celled, 1-seeded, 2-valved, carpels; seeds globose, roughish, carunculate.

History and Habitat.—Stillingia is indigenous to the United States, where it grows in light, sandy and dry soil, from East Virginia southward to Florida, and westward to Louisiana and Texas, flowering from April to September. For many years before its introduction in medicine, by Dr. T. Y. Symons,† as an alterative in syphilis, it had been used in the South, by the laity, as an emetic, cathartic, and alterative; indeed it was and is still considered, in Southern States, an absolute specific in syphilis, entirely superseding the use of mercury. It was also used as an expectorant in pulmonary disorders; a purgative in hepatic troubles; an alterative in scrofulosis; and was said to greatly add to the usefulness of sarsaparilla. Dr. Porcher says:‡ “This plant exudes a milky juice, very pungent

* In honor of Benjamin Stillingfleet, M.D. † Am. Med. Rec., 1828, 312. ‡ Resources Southern Field and Forest, 221
to the taste, and flowing in great abundance from the bruised surface. It is used
to some extent in this State (South Carolina) as an alterative in scrofula, in syphi-
lis, in cutaneous diseases, in chronic hepatic affections, and in the composition of
diet drinks. We are informed by a physician residing in this State that he has
treated syphilis successfully with it. It is believed to be possessed of valuable
properties, and greater attention should be paid to it by those living in the coun-
try, where it is easily obtained. A tincture is made with the root two ounces,
diluted alcohol a pint. Dose, a fluid drachm. A decoction is made of the bruised
root one ounce, water one and one-quarter pints; boil to one pint. Dose, one or
two fluid ounces several times a day." The use of the drug in the North has
not been as successful as it might have been, as the active properties of the plant
deteriorate in aged roots or preparations. It is said that a drop of the oil of the
plant placed upon the tongue, four times a day, has proved successful in severe
croup.

The officinal preparation in the U. S. Ph., is *Extractum Stillingiae Fluidum*
from the root; in the Eclectic Materia Medica the following preparations are
recommended: *Extractum Stillingiae Alcoholicum, Extractum Stillingiae Fluidum;
Linimentum Stillingiae Compositum;* *Pilulae Phytolaccæ Compositæ;* † *Syrupus
Stillingiae; Tinctura Stillingiae; Syrupus Stillingiae Compositus.* ‡

PART USED AND PREPARATION.—The fresh root, gathered after the
fruiting season, is treated as all Euphorbiaceous roots. § The resulting tincture is
nearly opaque; by transmitted light, in thin layers, it has a brilliant crimson color.
It retains the odor and taste of the root; is quite astringent; and has an acid
reaction.

CHEMICAL CONSTITUENTS.— *Stillingine.*—Harmanson|| (1882) procured
the sulphate of an alkaloid, for which, after special isolation, Bichy (1885) proposed
the above name; very little, however, is known of the body. Bichy describes it
as follows: "An amorphous powder, entirely volatilizing by heat, whose sulphate
exists as fine scale-like crystals." †

Oil of Stillingia.—The only product that I have examined, claimed to be this
body, was certainly not a pure oil, but appeared like a resinous oily mixture; it
had a burning, acrid, slightly bitter, and astringent taste, and the odor of the root;
it was of a deep brown color, and contained brownish particles insoluble in water
and alcohol. On adding it to water a resin was precipitated. Alcohol dissolved all
but the particles mentioned. The root, however, does contain both a fixed and a
volatile oil, as shown by Harmanson and Bichy.

The root also contains gum, starch, and coloring-matter.

PHYSIOLOGICAL ACTION.—Stillingia, in generous doses, causes the follow-
ing disturbances in the system: Depression of spirits; vertigo; burning, smarting,
and stinging in the mouth, fauces, and stomach; nausea and vomiting; diarrhœa

thoxyllum Berries.
attended with colic and burning tenesmus; bilious and dysenteric stools; increased urine attended with burning along the urethra; short, hacking, dry, and spasmodic cough; weak, irregular pulse; aching and sharp pains of a rheumatoid character in the arms and legs; burning itching of the skin, followed by a general herpetic eruption; languor; sleepiness; perspiration; and a general feeling of malaise.

Description of Plate 151.

1. End of a fruiting branch, from which most of the ripe fruits have fallen. St. Augustine, Fla., Aug. 21st, 1886.
2, 3, 4 and 5. Leaf-forms.
6. A portion of the male inflorescence.
7. A male flower.
8. A fruiting calyx.
10. Horizontal section of fruit.

(6-12 enlarged.)
CÉLTIS OCCIDENTÁLIS, Linn.
N. ORD.—URTICACEÆ.
S. ORD.—ULMACEÆ.
GENUS.—**CELTIS,*** LINN.
SEX. SYST.—POLYGAMIA MONCECIA.

CELTIS.

HACKBERRY.

SYN.—**CELTIS OCCIDENTALIS,** LINN.; **C. AUDIBERTIANA,** SPACH.
COM. NAMES.—**HACKBERRY TREE,** **AMERICAN NETTLE TREE,** **SUGARBERRY,** **BEAVER-WOOD**; (FR.) **SUCRE BAIE**; (GER.) **ZUCKERBEERE.**

A TINCTURE OF THE FRESH INNER BARK OF **CELTIS OCCIDENTALIS,** L.

Description.—This medium-sized tree grows to a height of 30 to 50 feet. Trunk very straight, about 8 or 10 inches in diameter; wood soft; bark very rough and corky, easily detached. Leaves petiolate, reticulated, ovate or ovate-lanceolate, smooth and scabrous above, downy pubescent beneath; base oblique or sometimes cordate; margin sharply, and plentifully or sparingly serrate, especially toward the tip, at the base often entire; stipules, caducous. Inflorescence monoeciously polygamous, somewhat racemose along the upper shoots of the season. Flowers appearing with the leaves and before they are developed; sterile flowers grouped in twos and threes along the lower and leafless portion of the young shoots; fertile or polygamous flowers racemously arranged at the leafy end of the shoot, the peduncles in the axils. Calyx 5-6 parted, persistent in the female; lobes more or less ovate-lanceolate, acute. Stamens, as many as the lobes of the calyx and opposite them; filaments curved inward and downward, inserted at the base of the calyx lobes; anthers large, sagittate, versatile and introrse, two-celled, with a longitudinal dehiscence. Ovary 1-celled; ovule anatropous; stigmas 2, sessile or nearly so, being in fact merely two lobes of the style divergently spreading and stigmatose upon the inner (now upper) surface. Fruit a dark purple, sweet and edible, globular drupe, of about the same appearance and size as a wild cherry; peduncles about twice the length of the petioles; exocarp coriaceous, divided into two equal parts by a prominent, circumvallating ridge. Nutlet spherical, about the size of a cherry-stone, pointed at the end and divided into four equal, rugose, portions by as many prominent ribs; embryo curved, almost completely enclosing the gelatinous albumen.

Urticaceae.—This large family, now including the Ulmaceæ, Artocarpaceæ and Cannabineæ, consists of trees furnished with a milky juice, and shrubs and herbs

* The ancient Greek name for the **Lotus-berry,** the fruit of the **Lotus** (*C. australis,* LINN.), supposed to have been the food of the **Lotophagi.** (See, however, under Leguminosæ, p. 4-62.)
having a watery juice, inhabiting principally the warmer portions of the globe. Stems and leaves various, many furnished either with stings or rigid hairs; stipules persistent, caducous or wanting. Inflorescence spicate, amentaceous, racemose or capitate; flowers monoeccious, dioecious or polygamous. Calyx regular. Corolla none. Stamens definite, as many as the calyx lobes, and opposite them, or fewer. Ovary simple, free from the calyx, 1-celled, rarely 2-celled; ovules 1 to each cell, anatropous or orthotropous; styles single, or two-lobed at the apex, the lobes stigmatose. Fruit an achenium, samara, urticle, or often rendered baccate by the persistent and now fleshy calyx. Albumen not always present; radicle pointing upward.

The sub-order ULMACEÆ, or Elm Family, furnishes us this remedy only; the other species used in medicine are: The East Indian Celtis orientalis, formerly used in epilepsy; and the European Lote Berry Tree (C. australis, Linn.), the bark of which is astringent, and is used in gonorrhœa and dysentery. The European Ulmus campestris, Linn., is considered to be diuretic as well as an astringent tonic; U. effusa, Willd., was at one time used as a substitute for sarsaparilla; and the American Slippery Elm (U. fulva, Michx.) is a well-known demulcent, and anti-herpetic, and is considered by many anti-syphilitic.

The sub-order ARTOCARPEÆ or Bread Fruit Family, yields several esculent fruits, while many of its members afford highly poisonous juices, and some a nourishing milk. The South Sea Island Bread Fruit is a product of Artocarpus incisa, and the Jack Fruit of A. integrifolia. The South American Cow Tree, so aptly named on account of the nourishing milky juice that freely exudes from the wounded trunk, is a species of Bromisum, and the Jamaica Bread Nuts are the fruits of B. alicastrum. The Asiatic Fig, the fruit of Ficus carica, Linn., of this sub-order, highly esteemed in all countries as a laxative dessert fruit, is also useful, when roasted, as an application to hasten suppuration in small circumscribed formations of pus; the bark of the East Indian Banyan Tree (F. Indica, Linn.), whose immense growth is famous, is used by the Hindoos as a tonic and anti-diabetic; it also yields a gum known as Gum Lac, and a juice useful as an application for aching teeth; the Indian India-rubber Tree (F. elastica, Roxb.) and the South American F. radula, elliptica, and prinoides, yield a fine quality of caulochouc; the East Indian F. racemosa, Linn., yields a bark that is a powerful tonic, useful in hematuria and menorrhagia; the wood of the African F. sycomorus is imperishable, and was used by the ancient Egyptians for mummy cases; F. septica is emetic, and the Indian F. daemona, Vahl., and toxica, Linn., yield extremely virulent juices. The Brazilian Caapeba, or Ca-apia, a product of Dorstenia Braziliensis, Linn., the Mexican D. contrayerva, Linn., and D. Houstoni, Miller, are all supposed to contribute more or less to the commercial Contrayerva, which is a gentle stimulant, diaphoretic, and nervine, as well as an alexipharmic, and has, in a great measure, supplanted serpentaria. Cecropia peltata is astringent and was once much valued in the treatment of chronic intestinal catarrh, and Musanga cecropioides, a powerful emmenagogue. The Mulberries, including the Levantine Morus Nigra, the American M. rubra, and the Chinese M. alba, yield edible fruits, while their barks are considered cathartic and anthelmintic; Fustic is
the bark of *M. tinctoria*. In concluding this varied sub-order, we are brought to that terrible Javanese tree, the deadly Upas (*Antiaris toxicaria*, Lesch.), under which most animals die; the toxic properties of this tree are, without doubt, greatly exaggerated, as all are not affected by its effluvia, still it is justly dreaded.

The sub-order *Urticeae*, or Nettle Family, contains many plants that are furnished with more or less toxic stings. Of this order we have provings of three species, viz.: The European Stinging Nettle, *Urtica Urens*, Linn.; the Bengalese *U. crenulata*, Roxb., whose sting is said to be as poisonous as the bite of a venomous serpent; and the Australian Stinging-Tree (*U. gigas*). The Timoor *U. urentissa* is probably the most virulent, its effects are said to last a year, and in some cases to have been followed by death; the Javanese *U. stimulans* is also very venomous. Our common nettle *U. dioica* is diuretic and astringent; the Egyptian *U. membranacea* emmenagogue and aphrodisiac; and it is claimed that the smooth species *U. pumila* relieves inflammation, erysipelas, and is a soothing application to the skin after Rhus poisoning. The Brazilian *Boehmeria caudata*, Swartz, is useful for the relief of hemorrhoidal tumors; and *Pilea muscosa*, of the same country, is found to be an excellent remedy in dysuria. *Parietaria officinalis* is considered diuretic and anti-arthritic; and *P. erecta* and *diffusa* are said to contain more sulphur than any other known plants.

The sub-order *Cannabineae*, or Hemp Family, contains our proven species, *Cannabis sativa* and *Humulus lupulus*.

History and Habitat.—The hackberry tree is indigenous to the Canadas and United States, as far south as the Carolinas. It habits more or less rich but rocky woods along the borders of streams, where it flowers just as the leaves appear in spring. It is often transplanted as a lawn shade, in such open situations it is much shorter in its growth and more umbrageous.

The only previous use of this species is that credited to the Aborigines, who are said to have given a decoction of the bark with good effect in syphilis. This decoction being astringent, was sufficient for its employment by the laity and Botanics as a "tonic" in various forms of alimentary and hematic trouble, though success in its use was of doubtful occurrence.

PART USED AND PREPARATION.—The fresh inner bark should be gathered when the tree is in full foliage, chopped and pounded to a pulp, and weighed. Then two parts by weight of alcohol should be taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. The whole is then to be poured into a well-stoppered bottle, and allowed to stand for eight days in a dark, cool place. The tincture, separated from this mass by decanting, pressing, and filtering, will have a deep, seal-brown color by transmitted light, and a strong acid reaction. This preparation has neither a distinctive odor nor taste.

PHYSIOLOGICAL ACTION.—Dr. J. S. Wright, in his experiments with this drug,* found it capable of causing a soreness of the muscles on pressure; sharp

* *U. S. Med. Invest.*, 1879, 339.
pains through the lungs; aching in the bones; swelling of the face, and afterwards of the whole body, with turgid blood-vessels; and sharp stitching pains generally throughout the system.

Description of Plate 152.

1. End of flowering branch, the fruiting female flowers alone showing, Binghamton, N.Y., May 17, 1885.
2. A polygamous flower.
3. Stamen and calyx lobe.
4. Anther, showing dehiscence.
5. Section of pistil.
6. End of branch in fruit.
7. A fruit.
8. Seed.

(2–5 enlarged.)
153. *Urtica urens*, Linn.
URTICA URENS.

STINGING NETTLE.

SYN.—URTICA URENS, LINN.; U. DIOICA, HUDS. (NOT LINN.).

COMMON NAMES.—STINGING NETTLE, DWARF NETTLE; (FR.) L’ORTIE; (GER.) BRENN-NESSHEL.

A TINCTURE OF THE WHOLE PLANT URTICA URENS, LINN.

Description.—This stinging annual, grows to a height of from 1 to 2 feet. Stem erect, 4-angled and branching; bark tough and fibrous; stings sparse but very virulent. Leaves opposite, elliptical or ovate, petiolate, 5-nerved, and furnished with a few scattered stings; margin deeply serrate, with long, spreading, and more or less blunt teeth; base truncate or sometimes slightly cordate; stipules, distinct, lanceolate, reflexed. Inflorescence in loose, axillary, drooping, racemose spikes, 2 in each axil; flowers androgynous. Sterile flowers: sepals 4; stamens 4, inserted around the rudimentary pistil; filaments transversely wrinkled and inflexed in the bud, spreading elastically when the flower opens. Fertile flowers: sepals 4, in pairs; the two outer small and spreading, the two inner concave, in fruit membranaceous and enclosing the akenium; stigma sessile, capitate, and penicillate; ovary 1-celled; ovule erect, orthotropous. Fruit a straight, erect, ovate, flattened, shining aken; embryo straight, axial; albumen present.

History and Habitat. — This European immigrant has established itself in many places eastward and southward near the coast, in damp, waste grounds, where it flowers in July and August.

The most ancient use of the Nettle is flagellation or urtication, a practice of whipping paralyzed limbs, to bring the muscles into action. This practice extended also to a stimulation of impotent organs, and to bring into action dormant energies. It was also resorted to in apoplexy, general cerebral and portal congestion, to bring the blood to the surface and thus relieve the more vital organs; in exanthematic fevers, to bring out the eruption; and for various affections where a powerful rubefacient was considered necessary.

The Nettle was afterward found to be styptic and anti-hemorrhagic, both topically and internally, and proved itself very beneficial in menorrhagic, epistaxis, and post-partum hemorrhage, hematemeses, and hematuria. Their decoction was found to be diuretic, and thus beneficial, in urinary calculus, scurvy, dropsy, gout, jaundice, etc.

Latin, uro, to burn.
The seeds were given in goitre, corpulence, glandular enlargements and scrofulosis, and were also considered anthelmintic and hypnotic; while verruca were said to entirely disappear in a fortnight, under daily application of the juice. The young shoots are considered excellent "greens," on their appearance in spring; and in Russia and Siberia, the stalks afford a tough fiber, not inferior to hemp for the manufacture of cloth, paper, nets, and ropes. A strong decoction of the plant, salted, is said to coagulate milk very quickly, and the product to prove devoid of any unpleasant taste.

PART USED AND PREPARATION.—The whole fresh plant is treated as in the preceding drug (page 152-3). The resulting tincture has a deep brown color by transmitted light; an odor resembling chocolate; an astringent herbaceous taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—*Formic Acid*, H_2CO_3. This volatile acid is found in a free state in the stings of this species; it is also found in the poison-bags of the red ant, the hairs of a species of caterpillar (*Bombyx processionea*), in pine needles, turpentine, and in many plants. *Formic Acid* was first obtained by Samuel Fisher, by distilling red ants, since which time it has been proven quite widely distributed. When pure, this acid is a colorless liquid, solidifying at $+1^\circ$ (33.8° F.), in the form of shining plates, and boiling at 100° (212° F.). It possesses a sour, pungent odor, something like acetic acid, a very acid taste, and is so corrosive to the skin that its blisters are very like those resulting from burns. It is freely soluble in both water and alcohol, as are also its salts.

As the effect of Nettle stinging differs considerably from that of *Formic Acid*, and as the distillate of the plant savors of ammonia, as well as of carbonic dioxide, another principle, alkaloidal in its nature, will probably be found in the species.

PHYSIOLOGICAL ACTION.—The following case of poisoning, by two cupfuls of a hot infusion of two ounces of the herb,* shows well the action of this drug; The skin of the face, arms, shoulders, and chest, was affected with extremely distressing, burning heat, with formication, numbness, and violent itching. The lips, nose, and ears were swollen, and the lids swollen and òedematous, so that they could scarcely be opened. After a while all the upper parts of the body, down to the navel, were frightfully swollen, pale and òedematous, rather than inflamed. A large number of small transparent blisters, filled with serum and looking like sudamina, developed and became confluent; on account of these the skin assumed a peculiar wrinkled appearance. There was no other remarkable disturbance, either of circulation or respiration. The patient complained neither of headache, nor of sensitiveness of the stomach and abdomen. The look of the patient was monstrous, the lids completely closed, forming transparent, and here and there bluish swellings, as large as hen's eggs. The upper lip, nose, and both ears were frightfully swollen. On the third day the face became free, but the chest and arms remained affected with an eruption, which itched so violently that the patient

scratched off the blisters, which exuded a large amount of serum. The woman, who had had no children for three years and a half, and had nursed none of her children, had at first excessive swellings of the breasts, which discharged at first serum, afterwards perfect milk; a very copious secretion of milk lasted for eight days. The secretion of urine was at first suppressed, and in spite of all diuretics and other remedies, not a single drop was secreted for eight days. During the whole illness there was a constant distressing itching. On the sixth day everything disappeared, with desquamation.

Description of Plate 153.

1. Top of a flowering plant, Salem, Mass., July 8th, 1885.
2. Male flower.
4. Female flower.
5. Fruit, with calyx.
7. Sting.
(2–7 enlarged.)
Cannabis. Sativa, Linn.
N. ORD.—URTICACEÆ.
Tribe.—CANNABINEÆ.
GENUS.—CANNABIS,* TOURN.
SEX. SYST.—DICECIA PENTANDRIA.

CANNABIS.

HEMP.

SYN.—CANNABIS SATIVA, LINN.; CANNABIS INDICA, LAM.
COM. NAMES.—INDIAN HEMP; (FR.) CHANVRE; (GER.) HANF.

A TINCTURE OF THE TOPS OF AMERICAN-GROWN CANNABIS SATIVA, LINN.

Description.—This tall, roughish annual, usually grows from 3 to 10 feet high. Stem erect, striate, roughish, ligneous at the base, simple or sparingly branched; inner bark tough and fibrous. Leaves digitately-compound, the lower opposite, the upper alternate; leaflets 3-5-7, linear-lanceolate, coarsely and sharply serrate, attenuate at both ends; finely scabrous, and dark-green above, pale and downy beneath; petioles long, slender, and scabrous; stipules linear, acute. Inflorescence dioecious. Sterile flowers in axillary compound racemes, or panicles; sepals 5, nearly separate, reflexed-spreading, nearly equal, oblong and downy; stamens 5, opposite the segments of the calyx; filaments short, drooping, not inflexed in the bud; anthers large, pendulous, 2-celled. Fertile flowers in axillary, spiked clusters, leafy below; flowers 1-bracted and sessile; calyx of a single, 5-veined, hirsute sepal, enlarging and cordate at the base, acute at the apex; ovary 1-celled; ovule single, erect, orthotropous; style not evident; stigmas 2, elongated, hairy, protruding far beyond the perianth. Fruit a glandular achenium, enveloped by the persistent sepal; pericarp membranaceous, indehiscent, but easily separable by pressure into two valves. Seed ovoid, smooth, brown, and veiny; embryo simply curved; albumen slight, oleaginous.

History and Habitat.—This native of the temperate portions of Asia—a plant of ancient cultivation—grows readily in this country, in waste places and cultivated grounds, where the cleanings of bird cages have found their way. It thrives well,† blossoming in July and August. The plant in its travels westward is supposed to have reached Italy during the Roman period, from whence it has spread in all temperate regions of the globe. It does not seem to have been known to the ancient Egyptians as having

* קָנָבָב, Kannabis; an Oriental name of unknown meaning, probably, however, derived from the Arabian name of the plant ganēb.
† A thrifty female plant, nine feet high, grew last year in a farm-house yard near Binghamton; and several of both sexes, fully seven feet, at Union, N. Y.
narcotic properties. Herodotus terms the plant Κάνναβις ηνερος, stating that the Thracians made a kind of cloth of it. The seeds were also thrown upon red-hot stones, and their perfumed vapor, so obtained, used for a fume bath, which excited from those enjoying it, cries of exultation. Dr. Royle considers it the Nepenthes of Homer, "the assuager of grief," given by Helen to Telemachus in honor of Menelaus; she is said to have received the plant from an Egyptian woman of Thebes. Dioscorides recommends the herb in the form of a cataplasm for inflammations, and to discuss tumors. Paulus Ægineta says the seeds are carminative and desiccative, and the juice of the fresh plant useful for pain and obstructions of the ears. In India, the plant is known by names which translated mean, "Grass of Fakirs," "Leaf of Delusion," "Increaser of Pleasure," "Exciter of Desire," "Laughter Mover," and "Cementer of Friendship."

The true Indian Hemp, i.e., that which contains to the fullest extent the narcotic properties of the herb, grows at altitudes of 6000 feet and over, principally in the Himalayas above Calcutta, and in Thibet. These plants differ in nowise botanically from those that grow at lower levels, but medically the variation is wide. It is certainly admissible here to mention the products of the more active form which, for convenience, we will retain as Cannabis Indica. The principal commercial form of the Indian plant is called Gunjah, Ganja, or in England Guaza. It is this form that reaches the American markets through London, and from which our tincture of C. Indica should be made. It consists, according to a fine specimen kindly given us by Shifflein & Co., of New York, of the dried, flowering tops, compressed into small, ovoid masses, cohering by the natural resin contained, and composed of small floral leaves, female flowers, and undeveloped seed. Each separate mass exhales a small portion of the stemlet upon which it grew, and exhales to a high degree the odor peculiar to the plant. This Gunja yields an excellent extract, which, when at a temperature of 65° F., is thick, and only runs when held a long time at a sharp angle; it is of so dark a green color as to appear jet black; has a strongly narcotic, peculiar, and not unpleasant odor; is very adhesive, insoluble in water, and fully soluble in alcohol, its solution having a brilliant green color. When placed upon the tongue no taste is at first noticed on account of its very slow solubility in the natural secretions of the mouth, but after a few moments the taste is a counterpart of the odor, and when the solution reaches the base of the tongue an agreeable bitter is notable. This extract was formerly used for our tincture. Other forms of the plant sold in India and Arabia are, α. Bhang. Subjee, or Sidhee, which consists of the dried leaves broken into coarse powder with which are intermixed a few seeds. This form is used for smoking, and is the narcotic ingredient of the confection called Majun. β. Charas, or Churrus, consisting of the natural resin of the tops and leaves, mixed with bits of the plant and much dirt. This form is usually procured by natives who pass among the plants, wearing a leathern apron to which the resin adheres; in the mean time the plant tops are rubbed with their hands, and afterward the hands and aprons scraped to gather the product. γ. Hashish, Hashish, or Hashash. These are the Arabian names for hemp. The product consists of the dried flowering tops
gathered before the fruits are formed. The famous heretical sect of Mohammedans, who, by murderous attacks upon the Crusaders, struck their hearts with terror, derived their name Hashashin from the drug, and from that our word assassin is derived. δ. Hemp. This textile is produced principally by those plants whose narcotic powers are least marked; those that grow in the lower altitudes producing the best article. This product is made into ropes and coarse cloths. ε. Hemp Seed. The seeds of this plant are considered fattening, and egg-producing when fed to birds. Cage-birds are particularly fond of them, but on account of their limited chances for exercise only a few per diem are usually allowed them. ζ. Oil of Hemp Seed. The seeds yield about 25 per cent. of their weight of a limpid, almost colorless oil, that makes a fine burning-fluid, and is used in the arts for mixing colors, and as a varnish.

In general practice the drug is used wherever an anodyne, hypnotic, or anti-spasmodic is judged necessary; the various diseases where it proves effectual are hardly mentionable, as the benefit is almost always homoeopathic, therefore, each disease should be individualized. Surgical tetanus, gonorrhoea, leucorrhoea, inflammation of the mucous membranes of the bladder and urethra, dysuria, delirium, and melancholia may be, however, mentioned as the diseases in which our Old School brothers usually get the most decided effects from this drug.

Cannabis Americana, i. e. the tops of American-grown plants, are officinal in the U. S. Ph. The plant is mentioned in the Eclectic Dispensatory, but no preparation is given.

PART USED AND PREPARATION.—The fresh flowering tops of the American-grown plants, both male and female, are treated as directed under Celtis.* The tincture, after straining and filtering, is opaque; has an herbaceous odor; a sweetish mucoid taste, followed by slight bitterness; and an acid reaction. The two tinctures of this plant may be compared as follows:

<table>
<thead>
<tr>
<th>Cannabinus Sativa.</th>
<th>Indica.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Growth.</td>
<td>Indian Growth at 6000 Feet.</td>
</tr>
<tr>
<td>Tincture.</td>
<td>Tincture.</td>
</tr>
<tr>
<td>Appearance, in bulk, deep opaque brown.</td>
<td>Deep opaque greenish-brown.</td>
</tr>
<tr>
<td>Twenty drops in a drachm of alcohol give an orange-brown color by transmitted light.</td>
<td>A slight greenish tinge only is noticeable; the two solutions nearly correspond.</td>
</tr>
<tr>
<td>Ten drops in two drachms of water quickly show the difference in the amount of resin.</td>
<td>this gives a completely opaque, heavy, dirty cream-colored mass.</td>
</tr>
<tr>
<td>This tincture shows only slight opalescence; while</td>
<td>In this the odor is plainly distinguishable.</td>
</tr>
<tr>
<td>In this tincture the peculiar pungent and heavy narcotic odor of Gunja is faintly, if at all, noticeable.</td>
<td></td>
</tr>
</tbody>
</table>

As the narcotic power of the drug lies mostly in the resin of the plant, the activity of the two states of the plant is readily understood by the above comparison, simple as it is.

* Page 152-3.
CHEMICAL CONSTITUENTS.—As far as I can determine, the American plant has not been analyzed, but as it at least contains a small amount of the resinoid principle of the Indian plant, it may be well to glance at the chemistry of Gunja, as it stands at this date. There is great uncertainty concerning the active principle of this drug, as the Cannabin of the Smiths fails, so far, to answer, at the hands of other chemists, to the characteristics claimed for it by them. Worden and Waddle find the nicotia-like alkaloid of Preobraschersky, but in their hands it proves inert; and, though Siebold and Bradbury found a volatile alkaloid (Cannabinine), they claim that it is unlike nicotia, though they have not tested its action upon animals. Merck isolated a glucoside, which he combines with tannin and calls Cannabin Tannin, and from which Bombelon obtained a body he terms Cannabinum; this tannin compound often proves inert. Matthew Hay reports an alkaloid, forming in acicular crystals, and having a tetanic action upon frogs, which he calls Tetano-Cannabin, and considers as a secondary principle.* This is about the condition of the chemistry of this drug to-day; which the following digest will farther explain:

Cannabin.—This body, extracted from Gunja, by Messrs. T. and H. Smith,† and considered much purer than Gastinel's Hashascin, results as a brown, amorphous, solid resin, which burns with a bright flame, leaving no ash, and is soluble in alcohol and ether. It is claimed, by its discoverers, to be very potent, two-thirds of a grain proving decidedly narcotic, and one grain causing complete intoxication. Personne claims that the activity of this body is due to the volatile oil, but his method of extracting the body was sufficient to render it inert, rendering his claim, therefore, inadmissible. Bolas and Francis‡ obtained from this body:

Oxycannabin, C_{20}H_{29}N_{3}O_{7}, which resulted in large, neutral prisms, from its solution in methylic alcohol. These crystals melt at 176° (348.8° F.), and evaporate without decomposition. Flückiger failed to obtain this body from purified resin of Charas.§

Oil of Cannabis.—This volatile, pale yellow oil, was discovered in the tops by Personne,|| who claimed it to be the active principle of the plant, and to cause, in those who inhaled its effluvium, shuddering, and desire for locomotion, followed by prostration and sometimes syncope. Bolig obtained this oil from the fresh tops of the Arabian plant, and found its effects to be similar to those claimed for it by Personne, and further stated that it contained oxygen. Personne succeeded in separating the oil into two hydrocarbons: Cannabine, C_{15}H_{29}, and Cannabine Hydride, C_{16}H_{22}, the latter being a solid composed of platy crystals.

Other unessential bodies have been determined, to none of which the activity of the drug can be assigned.

† Phar. Jour., 1847, 171.
§ Pharmacographia, 549.
|| Jour. de Phar., 1857, 48; Canstatt's Jahres., 1857, 28.
PHYSIOLOGICAL ACTION.—Carefully excluding, as far as possible, symptoms that may have arisen from the Indian product, the following will give some idea of the action of the herb of low altitudes, collated from the experiments of Drs. Schreter, Knorre, Wibmer, Wirk, and Lembke with the tincture, in doses of from 5 to 70 drops, and the infusion:* Depression and absent-mindedness; confusion, vertigo, and congestion, followed by cephalalgia; earache; toothache; dryness of the mouth, throat, and lips; loss of appetite; nausea, and vomiting after coffee; slight inflammation of the meatusurinarius, and diminished urine; sexual excitement without desire; oppression of the chest, and palpitation of the heart; weakness of the limbs; itching of the skin; and dreaminess during sleep.

DESCRIPTION OF PLATE 154.

Drawn from plants growing at Union, N. Y., July 26th, 1886:

1. A portion of male inflorescence.
2. Sterile flower.
3. A portion of female inflorescence.
4. Female flowers.
5. Male flower-bud.
6, 7, 8. Stamens.
9. Female flower.
11. Ovary.
12. Section of ovary.
14, 15, 16. Fruit.
17, 18, 19. Seed.
20. Longitudinal section { of a seed.
21. Horizontal section { of a seed.
22. Embryo.

(2 and 4–22 enlarged.)

* Allen, Ency., 2, 492, et seq.
HUMULUS LUPULUS, Linn.
N. ORD.—URTICACEÆ.
S. ORD.—CANNABINEÆ.
GENUS.—HUMULUS,* LINN.
SEX. SYST.—DIOECIA PENTANDRIA.

LUPULUS.

HOP.†

SYN.—HUMULUS LUPULUS, LINN.; H. AMERICANUS, NUTT.
COM. NAMES.—COMMON HOP, NORTHERN VINE; (FR.) HOUBLON; (GER.) HOPFEN.

A TINCTURE OF THE STROBILES OF HUMULUS LUPULUS, LINN.

Description.—This rough, twining perennial, grows to a height of 20 feet or more. Rootstalk large, thick, and branching; stems several from the same root, slender, solarly voluble, almost prickly downward. Leaves longer than the petioles, mostly opposite, and cordate, the upper neither lobed nor cleft, the lower palmately 3- to 5-lobed, all coarsely serrate, sharply pointed, and very rough, the roughness most resistant from the periphery inward; stipules at first erect, then reflexed, ovate, persistent, interpetiolar, the adjacent ones of each opposite pair confluent at their bases. Flowers dioecious. Fertile flowers in short axillary and solitary, sessile catkins; bracts ovate, acute, smoothish, foliaceous, and imbricated, each 2-flowered; calyx of a single sepal embracing the ovary; ovary ovoid, smooth, 1-celled; ovules solitary, pendulous; styles 2, very hairy, much longer than the ovary. Sterile flowers in lax, divaricate, axillary panicles; sepals 5, oblong, obtuse; stamens 5, opposite the sepals; filaments very short; anthers erect, oblong, linear, and apiculate, opening by two terminal slits. Fruit (!) a membranaceous, cone-like catkin or strobile, consisting of the whole female inflorescence now enlarged and scale-like; achenium, or true fruit, seed-like, subglobular, invested with a large scalaceous calyx (the enlarged bractlet); the true fruits and calices sprinkled with yellow, resinous, globular, and top-shaped grains (Lupulin). Seeds solitary, pendulous; testa thin; embryo coiled in a flat spiral.

History and Habitat.—The Hop is found wild, and is indigenous throughout Europe, except its most northern country, from whence it extends eastward through Central Asia to the Altai Mountains. In North America it is without doubt indigenous northward and westward, where it grows in alluvial soils, blossoming in July, and fruiting in September.

* From humus, damp, the habitat being alluvial soils.
† Anglo-Saxon, hoppon, to climb.
The cultivation of Hops in Central Europe—where their economic growth undoubtedly began—dates from about the middle of the eighth century. Their culture was introduced into England from Flanders in 1524, but they were not used in brewing until 1530, during the reign of Henry VIII, though they were indigenous to the British Islands at that time. The use of Hops in brewing is to add a wholesome bitterness, as well as to preserve the resulting product; this is the principal object of its culture, although the young shoots are often cooked and eaten in lieu of asparagus, and were once an article of hucksterage for that purpose. In keeping, Hops often become brown and acquire an unpleasant odor from the formation of valerianic acid; this is removed by bleaching them with sulphuric oxide. The use of the bleached hop caused an edict to be issued by Henry VIII that in his household no hops nor brimstone must be put into the ale. Gerarde, in speaking of the hop as used "to season" the ale, says that they "rather make it a physical drinke to keepe the body in health, than an ordinary drinke for the quenching of our thirst."

The medical use of hops was at first confined to their tonic, stomachic, and sedative properties; the latter was often doubted, but proved itself in many ways. During the illness of George III, in 1787, a pillow filled with hops was used instead of opiates to promote sleep; this practice is held to the present day. The principal use now is as a fomentation in painful swellings and suppurations, though their internal use in tincture, infusion, and powder, as an alterative, tonic, stomachic, diuretic, antirheumatic, antilithic, febrifuge, and anthelmintic is quite extensive. Hops are said to be not only a nerve sedative, but also to have the same influence upon the heart's action.

The use of Lupulin—i.e., the grains naturally found in the strobile—is principally due to the experiments of Dr. A. W. Ives, who first brought into notice the economy in bulk attainable by its use; and who, after naming the product as above, proved that most, if not all, the virtues of the hop lay in this product.

The strobiles are officinal in the U. S. Phar., as well as Lupulin, the first under the name Humulus, the second, Lupulinum; the preparations are: Tinctura Humuli; Extractum Lupulini Fluidum; and Oleoresina Lupulini. In the Eclectic Materia Medica the preparations are: Extractum Lupulini; Infusum Humuli; Tinctura Lupulini; and Unguentum Humuli.

PART USED AND PREPARATION.—The fresh ripe strobiles are treated like all the drugs of this order, as described under Cælis, page 152-3. The resulting tincture has a clear orange color by transmitted light; retains the odor of the strobiles to a high degree; is very bitter; and has an acid reaction.

CHEMICAL CONSTITUENTS.—Lupulic Acid,* C_{28}H_{50}O_{7}. This body was first determined by Payen,+ and afterward more or less purified by Lermer,‡ who called it Bitter Acid of Hops, and isolated it as large, odorless, brilliant, rhombic prisms,

* Lupulin, Lupulite, Humulin, Lupulina.
‡ C_{28}H_{50}O_{7}.
of extremely bitter taste, soluble in water; in this view he was corroborated by Etti.† Bungener,‡ however, disclaims the solubility and purity of the product on account of the potash used in its isolation, and describes the body as follows: Hop Bitter Acid, $C_{25}H_{35}O_4$. This "acid aldehyde" results in beautiful prismatic crystals, melting at 92°-93° (197.6°-199.4° F.), soluble in alcohol and chloroform, not soluble in water, and having a bitter, acid taste. On exposure to air it turns yellow and oxidizes like the oil, forming valerianic acid in part.

[Lupuline.—This body, claimed as a liquid, volatile alkaloid, having the odor of Conia, was isolated by Griessmayer;‡ no other analyst seems to have met with the product.]

Choline, $C_{15}H_{15}NO_2$.—This principle, found in the bile, brain, and yolk of eggs, was discovered in the hop by Griessmayer and Harrow.§

Trimethylamine, C_3H_7N.—This nitrogen base of methyl was discovered in the hop by Griessmayer. It boils at $+9.3^\circ$ ($+48.5^\circ$ F.), has a nauseous odor, resembling that of herring brine, in which in fact it is found, and is soluble in water and in alcohol.||

Humulo-Tannic Acid, ⊥ $C_{25}H_{38}O_{15}$.—This body forms in a whitish amorphous mass, soluble in water and alcohol, but not possessing the power—general in tannic acids—of precipitating gelatine; however, on heating the mass at 130° (266° F.), it parts with one molecule of water, and is transposed as follows:

$$ \text{Humulo-Tannic Acid} \cdot \text{Water} \rightarrow \text{Phlobaphine}. $$

This phlobaphine results in a red amorphous substance which readily precipitates gelatine.**

Oil of Humulus, $C_{10}H_{16} + C_{10}H_{16}O$ (Wittstein).—This oil, obtained from the strobiles, results as a greenish- or reddish-brown body, according to the ripeness of the cones. It is thin, neutral, hot tasting, and slightly bitter, has a density of 0.910, distills at 125°-175° (257°-347° F.), and hydrates at 210° (410° F.). It resinifies when exposed to the air, and develops valerianol ($C_9H_{12}O$), which afterward passes into

Valerianic Acid, $C_6H_{16}O_2$.—This body, obtained from the roots of Valeriana officinalis, was determined by Méhu †† to also exist in Lupulin in the proportion

§ Chem. News, 1885, 149.
|| Griessmayer, ibid.
⊥ Lupulo-Tannic Acid; but this name is not appropriate, as Dr. Bigelow appears to prove that there is no tannin in Lupulin, unless some other portion of the hop dusts into this product.
** Etti, 1826-8, and Am. Jour. Phar., 1879, 27; before quoted.
†† These, Montpelier, 1867, in Flück. and Han., Pharmacographia.
of 0.1 to 0.17 per cent., though other analysts claim that only in stale and spoiled hops, oxidized Lupulic Acid, and the resinified oil on account of an admixture of that acid, can the body be found. Valerianic Acid is a thin oily liquid, having a sour smell of rotten cheese, and boiling at 175° (347° F.).

Resins.—Etti determined two resins—α, white and crystallizable; β, brown and amorphous.

["Hopeine."—This so-called narcotic alkaloid, claimed to be extracted from hops by Williamson and Springmuelh, of London, is proven by Dujardin-Beaumetz to be a commercial fraud. The product claimed a high price, as it was said to be only obtainable at great expense from American Wild Hops, and consisted of morphine and some aromatic oil.]

PHYSIOLOGICAL ACTION.—Hops are truly sedative in many nervous troubles, and to the heart’s action, though probably not at all narcotic. In large doses they cause colic and constipation. The following symptoms, compiled from various doses of the drug, show it to be an irritant to the vaso-motor system and the inhibitory nerves. The symptoms were: Vertigo and confusion of the head; cerebral and arterial congestion; dilation of the pupils; thirst, nausea, loss of appetite and vomiting; diarrhœic stools with great urging; burning pain along the urethra with increased urine; respirations deep, almost stertorous, and rapid; decrease of the pulses; with high temperature and profuse perspiration.*

DESCRIPTION OF PLATE 155.

1. End of a fruiting branch, Binghamton, N. Y., Aug. 27th, 1885.†
3. Male flower.
4. Female catkin.
5. A female bract.
6. Enlarged fruiting bract.
7. Achenium enveloped in its persistent calyx.
8. Achenium, with calyx removed.
9. Vertical section of the seed.
10. Horizontal section of the seed.

(3-10 enlarged.)

† By an error, the prickly points on the stem were omitted below the fruits in the drawing.
N. ORD.—JUGLANDACEÆ.
GENUS.—JUGLANS,* LINN.
SEX. SYST.—MONOCIA POLYANDRIA.

JUGLANS CINEREA.

BUTTERNUT.

SYN.—JUGLANS CINEREA, LINN.; JUGLANS CATHARTICA, MICHE.; JUGLANS OBLONGA, MILL.

COM. NAMES.—BUTTERNUT, OIL-NUT, WHITE WALNUT; (FR.) NOYER GRIS; (GER.) WALLNUSS.

A TINCTURE OF THE FRESH YOUNG INNER BARK OF JUGLANS CINEREA, LINN.

Description.—This oblate tree usually attains a height and breadth of from 25 to 40 feet. Stem early branching, deliquescent; bark strongly aromatic and resinous, smoothish when young, and of a grayish color; wood brown, somewhat lighter in color and texture than that of the black walnut, its specific gravity varies from .376 to .487, and its weight from 22 to 30 lbs. per cubic foot. Leaves alternate, compound, odd-pinnate, about one foot long when mature; petioles long, densely clammy-pubescent; leaflets opposite, or nearly so, in from 7 to 10 pairs, and the terminal one, each oblong-lanceolate, sharply serrate, rounded at the base, pointed, and downy beneath. Inflorescence terminal on the branches; flowers monocious, the fertile ones in a cluster of from 3 to 5, amid the new leaves of the season; the sterile many, hanging in catkins (aments) from the leaf scars of the previous year. Fertile flowers: calyx regular, 4-toothed, clammy-pubescent; corolla consisting of 4 minute petals in the sinuses of the calyx. Style very short and comparatively thick; stigmas 2, long, and densely fringed with blunt papillae upon their inner surfaces. Sterile flowers: stamens projecting from the rachis of the ament in sufficient numbers to cover it throughout its entire length; calyx an irregular, horizontal, flat, bracted scale, furnished with a terminal and from 3 to 5 lateral teeth; stamens 8 to 14 or more, irregularly suspended from the under surface of the bract; filaments very short and thick; anthers ovate-oblong, 2-celled, furnished with a short abrupt point. Fruit oblong, pointed, 2 to 3 inches long and 1 to 1½ inches in diameter when green; epicarp fleshy, fibrous, and densely covered with a sticky pubescence; when dry, coriaceous, indehiscent; endocarp thick, bony, sculptured with deep rough-edged sinuses; nut 1-celled above, 2-celled below.

* The classical name of the walnut, Juglans regia; a contraction from Jovis gans, Jupiter's nut.
JUGLANDACEÆ.—A small family of very useful trees. Wood hard and dense. Leaves alternate, pinnate, astipulate. Flowers monoecious, the fertile ones single or in a small cluster or spike; calyx adherent to the ovary, regular, 3 to 5 lobed; petals sometimes present; the sterile flowers in long catkins; calyx bracted and irregular, overlapping the stamens like a hood. Ovary somewhat more than 1-celled, containing a single orthotropous ovule, the walls become thick and fleshy, affording thus a covering (epicarp) for the nut. Fruit a dry drupe, furnished with a bony endocarp, splitting into 2 valves in germination, and enclosing a large 4-lobed seed; albumen none; embryo 2 large, lobed, corrugated, sarcous, oily cotyledons.

The following fruits or nuts of this family are greatly esteemed on account of their rich oily "meats": The black walnut (Juglans nigra, Linn.), the butternut (Juglans cinerea, Linn.), the Maderia nut or English walnut (Juglans regia, Linn.), a native of Persia and the Himalaya, and cultivated in England and along the Mediterranean, the hickory or mocker-nut (Carya tomentosa, Nutt., and var. maxima, Nutt.), the shell-bark or shag-bark hickory (Carya alba, Nutt.), the western shag-bark hickory (Carya sulcata, Nutt.), and the pecan-nut (Carya olivæformis, Nutt.).

History and Habitat.—The butternut is a common tree throughout the Eastern, Middle, and Western States, and from the Canadas southward along the mountains, growing in rich woods along river banks, flowering from April to May, and ripening its fruit in September. The wood, as before mentioned, is valuable on account of its lightness, durability, and freedom from worm infestations; the fruit, when half formed, makes a fine pickle, and when ripe an article of hucksterage; the sap, gathered in its season, forms on boiling a fine sugar equal if not superior to that of the maple; the leaves, bark, and unripe fruit afford a dye of a chocolate-brown color for woollen goods, which, with that of the black walnut, was used in the South to great extent during the rebellion as a dye for the uniforms of the soldiers. The use of a decoction of the inner bark in medicine has been of some importance, especially as a mild cathartic; it acts thus without colic, and is said to leave none of the constipating effects so frequently following general cathartics; in diarrhœa and even dysentery it receives many encomiums from botanic physicians. The powdered leaves act as a rubefacient and vesicant, and have been used as a substitute for cantharides.

The inner bark of the root is officinal in the U. S. Ph. as Extractum Juglandis; in the Eclectic Materia Medica the same preparation is recommended.

PART USED AND PREPARATION.—The inner bark of young stems and roots, collected in May or June, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol is taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, it is poured into a well-stoppered bottle and allowed to stand eight days in a dark, cool place.

The tincture, procured by straining and filtering, should be opaque in layers of any quantity; in thin layers it should have a deep, rich, reddish-brown color by
transmitted light. It has an astringent, bitter taste, and an exceedingly acid reaction.

CHEMICAL CONSTITUENTS.—*Juglandin.* This body, extracted by Merrell, is spoken of as an impure resin; it probably contains the following principle, to which its action is doubtless due.

Nucin:* this acid, acrid body, was first discovered in the green epicarps of Juglans regia. Wittstein represents it as forming reddish-yellow, glossy, brittle needles, dissolving copiously in alkalies and ether, less soluble in alcohol, and but slightly in water. Nucin gives a beautiful purple color with the borates and phosphates of alkalies, and with subacetate of lead. Tannin,† resin,‡ volatile oil,§ fixed oil,† glucose,‡ and a volatile acid,§ have also been determined.

PHYSIOLOGICAL ACTION.—*Juglandin,* the extract of butternut, acts, according to Paine, as a drastic purge, producing irritation and inflammation of the mucous lining of the intestines, and if continued, its exhibition is followed by an exanthematous eruption much resembling the flush of scarlatina. It causes also a congestion of the portal circulation, and subsequent watery evacuations of the bowels.

DESCRIPTION OF PLATE 156.

1. End of flowering branch, with larger leaves removed; Binghamton, N. Y., June 2d, 1884.
2. Female flower (enlarged).
3. Male flower (enlarged).
4. Stamen (enlarged).
5. Section of ovary (enlarged).
6. Hair of pubescence (x 50).
7. Pollen (x 200).

* *Juglandic acid* (Thiebaud). † Thiebaud. ‡ S. Witherill. § E. S. Dawson.
CARYA ÁLBA, Nutt.
CARYA ALBA.

HICKORY.

SYN.—CARYA ALBA, NUTT.; CARYA SQUAMOSA, BART.; JUGLANS SQUAMOSA, MICHX.; JUGLANS ALBA, LINN.; JUGLANS COMPRESSA, WILLD.

COM. NAMES.—SHAG-BARK OR SHELL-BARK HICKORY, WHITE HICKORY, KISKYTOM.

A TINCTURE OF THE RIPE "MEATS" OF THE NUTS, CARYA ALBA, NUTT.

Description.—This valuable, rapid-growing tree, furnishing the best hickory nuts of the markets, attains a height of from 30 to 80 feet, and a breadth of from 20 to 50 feet. Stem erect, deliquescent, from 9 to 20 inches in diameter; bark smooth when young, but after the twelfth to fifteenth year it exfoliates in strips or wide laminæ from 1 to 4 feet long, and one-eighth to a quarter inch thick; this without injury to the life of the tree. The bark is brownish-gray externally, cinnamon color internally, very oily and inflammable, producing on combustion a great heat. Wood white internally, yellow near the bark, very valuable in the arts, and as firewood; it is dense, tough, and elastic, its specific gravity .760, and weight 47½ lbs. per cubic foot. Notwithstanding its hardness it rots easily when subjected to moisture. Leaves 3 or 4 compound, odd-pinnate, appearing with the flowers; leaflets 5, taper-pointed, sessile, or nearly so, finely serrate, the three terminal obovate or obovate-lanceolate, the two nearest the short petiole much smaller, oblong-lanceolate. Sterile flowers in pendent catkins, branched to the form of a trident, situate on a common peduncle arising from the base of the shoot of the season, in the axis of the large, conspicuous, tardily deciduous, scaly, leaf buds; calyx naked, clinging to its bract, irregularly 2 to 3 parted. Stamens 3 to 8 or more, suspended from the bract-like calyx; filaments short and inconspicuous or wanting; anthers 4, downy pubescent. Fertile flowers 2 to 3 or more in a pedunculated cluster or spike amid the young leaves, and terminal on the growth of the season; calyx with a 4-toothed limb; petals wanting; stigmas 2 to 4, large, sessile, papillose, and persistent. Fruit a globular or depressed-globose, somewhat four-sided nut; epicarp thick, fleshy, and fibrous, splitting into 4 equal valves when dry; endocarp bony, smooth between the rounded ridges, and tipped with a sharp point, somewhat 2-celled above and 4-celled below; cotyledons corrugated, rich, and sweet. Read description of Natural Order under Juglans cinerea, 156.
History and Habitat.—The shag-bark hickory is indigenous to the Atlantic States of North America from Maine to the Carolinas, growing in rich woods and along streams. It blossoms in May and ripens its fruit in October.

The bark of the hickory affords with copperas an olive, and with alum a green, dye for woolens; the ash yields a very fine lye, and the "meats" an excellent oil for burning. The wood is valuable for the handles of most light and heavy implements, for barrel-hoops, sail-rings, hand-spikes, and pins, but is useless for any purpose in which it would be subjected to alternate wettings and dryings. In medicine I can find no account of its use prior to the provings, which so far are slight. Carya is not mentioned in the U. S. Ph. nor the Eclectic Materia Medica.

PART USED AND PREPARATION.—The ripe cotyledons are finely powdered, covered with five parts by weight of alcohol, and kept for eight days in a tightly-stoppered bottle, in a dark, cool place.

The tincture obtained by decanting and filtering, has a light-canary color by transmitted light, an odor and taste of the nut, and a neutral reaction.

CHEMICAL CONSTITUENTS.—I am unable to find record of any analysis of this plant or its seed. On evaporating the tincture under the addition of water until the alcohol entirely passed off, a light and a heavy oil separated, both liquid at ordinary temperatures. The heavy oil separated in greater quantity, and solidified at 7° (44.6° F.); both retained the peculiar odor and taste of the nut. No specific principle was yielded by farther analysis.

Description of Plate 157.
1. End of flowering branch; Binghamton, N. Y., June 3d, 1884.
2. Female flower (enlarged).
3. Male flower (enlarged).
5. Longitudinal section of the nut.
6. Horizontal section of the nut.
7. Section of the ovary (enlarged).
8. Trunk of tree (diminished).
9. Pollen (3 views x 200).
CASTANEA VESCA, Linn.
CASTANEA VESCA.

CHESTNUT.

SYN.—CASTANEA VESCA, LINN.; CASTANEA VESCA, VAR. AMERICANA, MICHX.; CASTANEA EDULIS, GAERTN.

COM. NAMES.—CHESTNUT; (FR.) CHATAIGNIER; (GER.) KASTANIE.

A TINCTURE OF THE FRESH LEAVES OF CASTANEA VESCA, VAR. AMERICANA, MICHX.

Description.—This forest tree, highly esteemed for its timber and edible nuts, attains a growth of from 40 to 80 feet in height. The stem is deliquescent, from 2 to 4 feet in diameter, and covered with a thick, corrugated bark, smoothish upon the corrugations; branches thick, very irregular, and contorted. The wood commercially, is light and porous, having a sp. gr. of 404, and weighing but 25 lbs. 4 oz. per cubic foot; on account of its durability it is valued principally for fencing. The leaves are petiolate, oblong-lanceolate, coarsely serrate, pointed at the tip and acute at the base, from 4 to 9 inches long, and from 2 to 4 inches wide; they are particularly noticeable on account of their straight pinnate veins. Inflorescence cream-colored, monoeious, axillary upon the ends of the branches, and appearing after the leaves. Sterile flowers in irregularly placed clusters upon naked, subcylindrical aments, that vary from 3 to 6 inches in length. Calyx generally 6-parted. Stamens 8 to 20; filaments slender; anthers 2-celled. Fertile flowers few, usually from 2 to 3 closely crowded in an involucre. Involucres in a cluster at the base of the aments, ovoid, thickly covered with spines. Calyx tubular with a bell-shaped 6-lobed border, encircling the ovary in the form of a crown. Ovary 3 to 6-celled; ovules 6 to 14; stigmas awned, equal in number to the cells of the ovary. Stamens 5 or more, rudimentary, rarely perfect, longer than the calyx. Fruit, a large, hard, thick, echinate, 4-valved bur, enclosing from 1 to 3 or more nuts, laterally flattened by compression, in shapes depending upon the number in the bur.

Cupuliferæ.—Trees or shrubs with white, and generally firm, hard wood. Stipules caducous; leaves alternate, pinnately veined. Inflorescence upon the ends of the branches; flowers monoeious; sterile flowers in catkins (except Fagus); fertile flowers solitary, grouped or spiked, furnished with a scaly or echinate cup or bur forming a receptacle for the nuts; calyx adherent to the ovary, the border

* Kastoria or Kassowia, a city of Pontus, noted for its chestnut trees.
forming a ring or crown about its summit. *Stamens* of sterile flowers either equal in number to the calyx lobes or two or three times as many, usually exserted; rudimentary stamens often present in the fertile flowers. *Ovary* generally more or less 2- to 7-celled; *ovules* anatropous, one or more in each cell; all of the ovules and cells except one aborting, to form a 1-seeded nut. *Seeds* mostly edible, forming among others the following nuts: Sweet-acorn (*Quercus alba*), Chestnut (*Castanea vesca* and *var. Americana*), Chinquapin (*Castanea pumila*), Beech-nut (*Fagus ferruginea*), Hazel-nut (*Corylus Americana, C. rostrata*), and Filbert (*Corylus avellana*). *Albumen* none; *embryo* formed of two thick, sarcous cotyledons and a short or retracted radicle, filling the whole nut.

History and Habitat.—This variety is indigenous to the United States from southern and middle parts of Maine to Michigan and southwards, especially along the hills and mountains; flowering in June and July, fruiting in October. The chestnut tree is remarkable both for its size and longevity; there is a specimen on the Neversink Highlands, New York Harbor, called the “elephant,” which is said to be fully five hundred years old; Case’s *Bot. Index*, April, 1880, mentions an individual near Seymour, Ind., measuring 22 feet in diameter two feet from its base, and 70 feet to the first branch. The nuts when dry are sweet and wholesome, forming an article of merchandise. The best chestnuts of France, the *marrons*, a large variety of *C. vesca*, are much esteemed when boiled, and form almost as prominent an article of hucksterage as the common roasted peanut does here. In the south of France and North of Italy the harvest is very large; here the nuts are largely used as a substitute for wheat flour and potatoes. The leaves are officinal in the U. S. Ph. as *Extractum Castaneae Fluidum*.

PART USED AND PREPARATION.—The fresh leaves, gathered in September while still green, are chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it and the rest of the alcohol added. After stirring the whole well and pouring it into a well-stoppered bottle, it is allowed to stand eight days in a dark, cool place. The tincture is then separated by decanting, straining and filtering. Thus prepared, it has a deep-brown color by transmitted light, an odor like that of the leaves, an astringent taste, and highly acid reaction.

CHEMICAL CONSTITUENTS.—The only analysis of this plant is one of the leaves, conducted by L. J. Steltzer (Am. Jour. Phar., 1880, p. 292). He determines the constituents to be: tannin 9 per cent., gum, albumen, a soft yellowish resin, fat and extractive; together with salts of K, Ca, Mg, and Iron. When assaying for an alkaloid, he obtained negative results.

PHYSIOLOGICAL ACTION.—I am unable to find any data upon this. The leaves in decoction have been used for whooping-cough. The provings by Dr. Houghton show no particular action upon the air-passages. Castanea is claimed to have a sedative action upon the nerves of respiration.

DESCRIPTION OF PLATE 158.

1. End of branch in flower, Binghamton, N. Y., July 26th, 1882.
2. A nut, representing the form when two are enclosed in the bur.
Óstrya Virginica, Willd.
Ostrya.

Hop-Hornbeam.

SYN.—OSTRYA VIRGINICA, WILDL.; CARPINUS OSTRYA-AMERICANA; MICHX.; C. OSTRYA, MICHX. f.

COM. NAMES.—AMERICAN HOP-HORNBEAM, IRON-WOOD;† LEVERWOOD; (GER.) HOPFENHAINBUSCHE.

A TINCTURE OF THE HEART-WOOD OF OSTRYA VIRGINICA, WILDL.

Description.—This small forest-tree seldom attains a growth of over 30 feet in height and a diameter of 8 inches. Bark of the younger trees birch-like, of the older ones, much resembling that of the white oak, although its furrows are narrower. Buds acute, their leaves plaited upon the veins. Leaves ovate-oblong, taper-pointed, pinnately-veined, smooth above, and downy beneath especially upon the veins; margin sharply, doubly or irregularly serrate. Inflorescence dioecious, the flowers appearing with the leaves; sterile flowers in drooping, cylindrical aments, consisting of several stamens in the axil of each bract, and terminating the branches of the previous year’s growth; fertile flowers in short catkins, a pair under each deciduous bract, and terminating the short shoot of the season; involucral sacs bristly hairy at the base. Calyx of the fertile flowers adherent to the ovary; limb bearded. Stamens 8 to 10 or more; filaments short, once irregularly forked; anthers 1-celled, one on each branch of the fork (a single, divided, 2-celled anther?), hairy at the apex. Ovary incompletely 2-celled and 2-ovuled, enclosed in a tubular bractlet; style short; stigmas 2, long and linear. Fruit an oblong-ovoid, pendulous, strobile-like cluster of several membranous involucral sacs, each enclosing a smooth, achenious nutlet. Read the description of the natural order, page 158.

History and Habitat.—The Hop-Hornbeam is indigenous to Eastern North America from Florida northward. It is commonly found in rich woods anywhere within its limit, and flowers in April, its peculiar fruit being fully ripe in August. The other American Iron-wood, Carpinus Americana, need never be confounded with this species, as it is much more like a beech.

* The classical name, from ὀστρέων, a scale, alluding to the peculiar fruit.
† Also applied to the hornbeam, Carpinus Americana, Michx.
A decoction of the heart-wood of this tree has long been used by the laity as an antiperiodic in intermittent fever, and as a tonic and alterative in scrofulous dyscrasias and dyspepsia.

The wood is very hard, dense and tough, weighing 48 lbs. 11 oz. per cubic foot, and of .779 sp. gr. It is very valuable to the farmer as a "binder" for heavy loads, and for use as levers. In the manufactories it has often furnished fine cog-wheels and excellent handles for tools.

PART USED AND PREPARATION.—The fresh heart-wood, in coarse powder, is covered with five parts by weight of alcohol, and allowed to remain eight days in a well-stoppered bottle in a dark, cool place. The tincture then separated by filtration should have a clear, brilliant orange-red color by transmitted light, a slightly aromatic odor, a peculiar astringent and bitterish taste, and an acid reaction.

PHYSIOLOGICAL ACTION.—The heart-wood in powder or decoction causes headache, loss of appetite, nausea, flatulent colic, bilious defecation with great tenesmus, aching extremities, general debilitated condition, and diaphoresis.

DESCRIPTION OF PLATE 159.

1. End of sterile flowering branch, Binghamton, N. Y., May 16th, 1885.
2. Superior view of staminate bract.
3. Under view of same.
4. Stamen.
5. End of fruiting branch.
6. An involucrare scale of fruit.
7. Under view of same.

(2-4 and 6-7 enlarged.)
MYRICA CERIFERA, Linn.
MYRICA.

BAYBERRY.

SYN.—MYRICA CERIFERA, LINN.

COM. NAMES.—BAYBERRY, WAX MYRTLE, CANDLE-BERRY, TALLOW SHRUB; (FR.) ARBRE À SUIF; (GER.) WACHSBUSCH, WACHSGAGLE.

A TINCTURE OF THE FRESH ROOT BARK OF MYRICA CERIFERA, LINN.

Description.—This somewhat fragrant shrub attains a growth of from 3 to 8 feet. Branches numerous, especially at the summit of the plant; branchlets pubescent. Leaves somewhat preceding the flowers; they are oblong- or cuneate-lanceolate, narrowing at the base, shining or resinous dotted on both sides and pubescent underneath; apex obtuse; margin entire, or with a few wavy or short, sharp serratures near the apex. Inflorescence dioecious, amentaceous, solitary, from under the axillary scale-buds of the previous years' leaves; flowers destitute of calyx or corolla, and furnished with a pair of wedge-shaped naked bractlets. **Sterile catkins** oblong or cylindrical; bracts rhombic; stamens 2 to 8, usually 4, longer than the bracts; filaments somewhat united below; anthers large, 2-celled. **Fertile catkins** ovoid, smaller than the sterile; ovary furnished with 2 to 4, usually 3, ciliate, rounded, obscurely 3-lobed scales at its base; stigmas 2, thread-like. Fruit scattered groups of small, globular, bony, and naked nutlets, having numerous minute black grains upon its surface that are incrusted with wax.

Myricaceæ.—A small family of monœcious or dioecious shrubs or small trees, found in both Americas, India, Cape of Good Hope, and one species in Europe. Leaves alternate, simple, resinous dotted, and often fragrant; stipules present or absent. Inflorescence, both kinds in short scaly aments; involucre none. Flowers destitute of both calyx and corolla; fertile catkins in an ovoid or cylindrical head; ovule single, erect, orthotropous; styles 2, filiform, subulate, or dilated and petaloid. **Sterile catkins** with 2 to 10 stamens in the axil of a squamous bract; filaments free or partly united; anthers 2- to 4-celled; dehiscence longitudinal. Fruit a dry, drupaceous, indehiscent nut; albumen none; cotyledons sarcous; radicle short, superior.

Μύρις, myros, to flow, as the plant grows near water. The ancient name of the Tamarisk, μυρίς, myrike, from μύρις, myrous, to perfume, does not apply.
The plant under consideration is the only one of the family represented in our Materia Medica; several other species, however, are sometimes used as remedies, especially in domestic practice, viz.: The American and European Sweet Gale (*Myrica Gale*, Linn.), whose berries in infusion are said to be an efficient remedy for itch, and a vermifuge; the leaves are said to be substituted for hops in Sweden, in the manufacture of beer. The other six American species of the genus *Myrica* are often substituted for the species *cerifera* in domestic practice. The fruit of the Nepaul *M. sapida* is said to be pleasantly acid and edible; while the Cape of Good Hope *M. cordifolia* yields a wax, said by Thunberg to be eaten by the natives. The American Sweet Fern (*Comptonia asplenifolia*, Ait.) is in constant domestic use in some localities for checking diarrhoea, and as a fomentation in rheumatism and bruises.

History and Habitat.—The Wax Myrtle grows in thickets near swamps and marshes in the sand-belt along the Atlantic coast from Florida northward, also on the shores of Lake Erie; it is, however, rare in the interior. It flowers from April to May, according to locality. In the South it is a small evergreen tree; in Delaware and Southern New Jersey, a tall, semideciduous shrub; and in the North, dwarfed and deciduous.

Both the wax and root-bark have been used in medicine, the action of each being quite different, though both are astringent and stimulant to weakened mucous membranes.

The Bark.—Dr. Charles A. Lee* sums up the uses of the bark of the root: "Bayberry bark possesses tonico-astringent properties which entitle it to a very respectable rank among our indigenous astringents. Reduced to a powder, it is acrid and styptic to the taste, and in doses of one drachm causes a sensation of heat in the stomach, followed by vomiting and purging, and sometimes by diuresis. A decoction has been long used in diarrhoea, dysentery, uterine hemorrhage, dropsies succeeding fevers, and as a gargle in affections of the throat and faucets." When chewed it acts as a sialagogue, useful in toothache and to stimulate tender, spongy, or bleeding gums. In the Eclectic practice bayberry bark is a noted remedy in scrofulous sores and ulcers, used as a poultice; and for jaundice, especially the form termed black jaundice. In the Botanic practice bayberry bark and lobelia constituted almost a complete materia medica.

Myrica Wax.—The use of this substance in medicine was first published by Alexandre (1722), who mentions a wax which he describes and says is used in Louisiana by the colonists in the manufacture of candles; and farther adds that the water in which the wax has been "tried," when boiled to an extract, is a certain cure for the most violent cases of dysentery. Dr. Wm. Fahnestock considered the wax to be, in direct proportion to its viridity, astringent and plainly narcotic, and claims to have been eminently successful in treating with this substance many severe cases of typhoid dysentery. In Eclectic practice this wax ("Myricin") is

* *Jour. Mat. Med., N. S., vol. i, 257.*
held to be serviceable in aphthous affections of the mucous surfaces, such as stomatitis, nursing sore mouth, ulcerated fauces, bowels and stomach; also in leucorrhoea, etc., etc.

Production and Chemistry.—Vegetable wax is a compound substance furnished by many plants either naturally or from their juices through the agency of insects. The following table, including all those that are produced in a sufficient quantity to be available, will be of interest:

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Melting Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacao, Chocolate Butter</td>
<td>Theobroma cacao, L.</td>
<td>36°–33°</td>
</tr>
<tr>
<td>Koya Wax</td>
<td>Cinnamomum pedunculatum, N. ab E.</td>
<td>38°–40°</td>
</tr>
<tr>
<td>Chinese Vegetable Tallow</td>
<td>Stillingia seibifera, Mart.</td>
<td>37°–45°</td>
</tr>
<tr>
<td>Myrica Wax</td>
<td>Myrica cerifera, L.</td>
<td>47°–49°</td>
</tr>
<tr>
<td>Japan Wax</td>
<td>Rhus succedanea, L.</td>
<td>52°–53°</td>
</tr>
<tr>
<td>Cow Tree Wax</td>
<td>Galatodendron utile, Humb.</td>
<td>58°</td>
</tr>
<tr>
<td>Bees' Wax</td>
<td>Apis mellifica, etc.</td>
<td>62°–63°</td>
</tr>
<tr>
<td>Chinese Wax</td>
<td>Coccus ceriferus,</td>
<td>70°</td>
</tr>
<tr>
<td>Igota Wax</td>
<td>Lingustrum Igota, Sieb.</td>
<td>80°–82°</td>
</tr>
<tr>
<td>Sela Wax</td>
<td>Fraxinus Chinesis, Roxb.</td>
<td>82.5°</td>
</tr>
<tr>
<td>Carramba Wax</td>
<td>Copernicia cerefera, Mart.</td>
<td>83.5°–84°</td>
</tr>
<tr>
<td>Brazil Wax</td>
<td>Unknown,</td>
<td>97°</td>
</tr>
<tr>
<td>Palm Wax</td>
<td>Ceroxylon andicola, Humb.</td>
<td>100°</td>
</tr>
</tbody>
</table>

The production of myrica wax, or bayberry tallow, has been carried on to a somewhat large extent, mostly for the manufacture of candles and soap, generally as described by Toscan in a work entitled *L'Ami de la Nature*. This describes the method employed in an early day.* Candles made from this wax, though quite brittle, are less greasy in warm weather, of fine appearance, slightly aromatic, and smokeless after snuffing, rendering them much more pleasant to use than those made of either wax or tallow. Soap from this wax makes an aromatic and very softening shaving lather, and a fine body for surgeons' soap plasters.

Myrica wax, C₆H₁₂O₆, † is harder and more brittle than beeswax. Its specific gravity varies from 1.004 to 1.006, and its melting point from 47°–49° (116.6°–120.2° F.). Four-fifths of the wax is soluble in hot alcohol, leaving a residue not soluble; boiling ether dissolves more than one-quarter of its weight, of which.

* *Towards the end of autumn, when the berries are ripe, a man leaves his house, together with his family, to go to some island or bank near the seashore where the wax-trees grow in abundance. He carries with him vessels to boil the berries, and a hatchet to build a cottage where he may find shelter during his residence in this place, which is usually three or four weeks. While he cuts down trees his children gather the berries. A very fertile shrub will afford nearly seven pounds. When these are gathered the whole family employ themselves in procuring the wax. They throw a certain quantity of the berries into the kettle, and then pour a sufficient quantity of water on them so as to cover them to a depth of about half a foot. They then boil the whole, stirring the grains about and rubbing them against the sides of the vessel in order that the wax may more easily come off. In a short time it floats on the water like fat, and is collected with a spoon and strained through a coarse cloth to separate it from any impurities which might be mixed with it. When no more wax can be obtained they take the berries out with a skimmer and put others into the same water, but it must be entirely changed the second or third time, and in the meantime boiling water must be added as it evaporates, in order to avoid retarding the operation. When a considerable quantity of wax has been obtained by this means, it is laid on a cloth to drain off the water with which it is still mixed. It is then melted a second time, and it is then formed into masses. Four pounds of berries yield about one of wax; that which is first obtained is generally yellow; but in later boilings it assumes a green color from the pellicle with which the kernel of the berry is covered."
† Levy, *Handwörterbuch der Chemie*, v, 413.
however, nearly all is deposited on cooling; at a moderate heat turpentine dissolves about six per cent.* The wax saponifies readily with a solution of caustic potash, yielding a fragrant soap, fully soluble in water, and breaking down under the action of sulphuric acid into a mixture of fatty acids. Myrica wax, according to G. E. Moore,† is composed of about one-fifth palmitin, the remaining four-fifths being free palmitic and lauric (myristic?) acids.

Myrica has no place in the U. S. Ph.; in the Eclectic Materia Medica its preparations are: Cataplasma Myrica, Decoctum Myrica, Extractum Myrica, Lotio Lobeliae Composite,‡ Pulvis Asclepiae Compositus,§ and Pulvis Myricae Compositus.||

PART USED AND PREPARATION.—The fresh bark of the root is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, pour it into a well-stoppered bottle, and let it stand eight days in a dark, cool place.

The tincture separated from this mass by pressure and filtration should have a deep crimson color by transmitted light, a peculiar vinous odor, a very astringent taste, and strong acid reaction.

CHEMICAL CONSTITUENTS.—Myricinic Acid. This body, of unknown composition (bearing, however, great resemblance to myristic acid, C_{14}H_{28}O_{3}, from Myristica fragrans, Houtt.), may be obtained from the alcoholic extract of the root-bark by extracting with ether and washing in hot absolute alcohol. The acid then deposits as a granular, acrid mass, producing a dense froth on agitation with water. It fuses at 53.6° (128.4° F.), and is soluble in absolute alcohol.¹

An acrid resin soluble in alcohol and ether;¹² an astringent resin soluble in alcohol;¹² volatile oil;¹³ tannic,¹²³ and gallic acids;¹²³ starch;¹² gum;¹²³ and a red coloring-matter¹² have also been determined in the bark of the root.

PHYSIOLOGICAL ACTION.—Myrica, in frequent doses of the extract, causes dizziness; headache;smarting, burning, and soreness of the eyes; burning catarrhal condition of the nostrils; yellowness of the countenance; heat and dryness of the throat; hunger; heat and nausea; distension of the stomach and abdomen, with griping and passage of very offensive flatus; diarrhoea, followed by total absence of stool; increased secretion of urine, followed by diminished secretion, and even to scantiness; increased heart’s action; general languor and depression; sleepiness; chilliness and sensations as of fever.

DESCRIPTION OF PLATE 160.
1. End of female branch, retaining one of the previous year’s leaves, Landisville, N. J., May 29th, 1885.
2. Female flower.
4. Portion of a fruiting branch.

* Bostock, Nicholson’s Jour., vol. iv, 130.
‡ Bayberry bark, Lobelia leaves and seed, Yellow-dock root, and vinegar.
§ Pleurisy root, Spearmin,t Sumach berries, Bayberry bark, Skunk Cabbage root, and Ginger.
|| Bayberry bark and Bloodroot.
Salix Purpurea, Linn.
N. ORD.—SALICACEÆ.
GENUS.—SALIX,* TOURN.
SEX. SYST.—DICECIA DIANDRIA.

SALIX PURPUREA.

PURPLE WILLOW.

SYN.—SALIX PURPUREA, LINN.; S. HELIX, LINN.; S. MONANDRA, EHR.; S. LAMBERTIANA, PURSH.
COM. NAMES.—BITTER PURPLE WILLOW, RED WILLOW; (GER.) PURPURISCHE WEIDE.

A TINCTURE OF THE BARK OF SALIX PURPUREA, L.

Description.—This species only attains a growth of from 6 to 10 feet. Branches terete and lithe; twigs olivaceous or reddish; bark very smooth and bitter. Leaves partly opposite on some branches, alternate on others, all oblongolate, pointed, smooth, minutely and sparingly toothed. Inflorescence in lateral, sessile aments appearing before the leaves; catkins cylindrical, bracted at the base; scales entire, round and concave, very black, more or less hairy, and persistent. Sterile flowers: stamens 2; filaments united into one, and having a little gland at their base; anthers double, 4-celled, reddish. Fertile flowers: ovary sessile or nearly so, downy, with a little flat gland on the inner side of the base; stigmas 2, nearly sessile, or more properly 1, and emarginate.

Salicaceæ.—This small order is composed of but 2 genera, both of which are represented in North America by a total of 51 species and 29 varieties. Its species are all of the temperate and frigid zones, (Salix arctica, Pal.) being found farther north than any other known woody plant. The order is characterized as follows: Trees or shrubs with a bitter bark. Leaves alternate, undivided; stipules scale-like and deciduous, or leaf-like and persistent. Inflorescence amantaceous, the aments from under each bract; flowers dicocious; perianth wanting. Sterile flowers with from 2 to 12 or more stamens, sometimes monadelphous. Fertile flowers of a single 1- or imperfectly 2-celled ovary; style very short or none. Fruit a 2-valved pod; placentæ 2. Seeds numerous, ascending, provided with a long silky down; cotyledons flattened; albumen none.

Beside the two species here represented, there are a few others used in medicine, viz.: The European Salix Russeliana, Smith, which was considered by Sir James Smith to be the most highly therapeutic of the genus; the European S. alba, Linn., is the usual pharmacopoeial species; the Sweet Willow of Europe

* Celtic, sal, near; lis, water.
(S. pentandria, Linn.) is sometimes preferred in decoction on account of its inherent aroma; while S. Caprea, Linn., is official in the Dublin Pharmacopœia. The leaf-buds of the European Black Poplar (Populus nigra, Linn.) are frequently used in the form of Unguentum Populeum as a vulnerary; the Lombardy Poplar (P. dilatata) is sometimes used as a substitute; and the buds of the Taomahac Poplar (P. balsamifera, Linn.) are considered diuretic and antiscorbutic.

History and Habitat.—The Purple Willow is adventive in this country from Europe. It has become scattered here in many places, on wet meadows, probably by basket-makers, and blossoms in April and May. If the amount of salicin in the willows depends upon the bitterness of the bark, this species should probably furnish more than any other; we will, therefore, give the general action and history of willow under this species, in default of specific literature.

As a bitter tonic and astringent this genus has been used from the time of Dioscorides, but has attracted more attention among medical men since the year 1763, when it was brought forward as a remedy for fevers of an intermittent character. The bitterness of the bark makes it an excellent stomachic tonic, but its control over fever was never very satisfactory. Its principal utility has been found to be as an astringent tonic in convalescence from protracted diseases, atony of the digestive tract, chlorosis, chronic diarrhoea, dysentery, leucorrhœa, and kindred affections. Salicin itself appears to have a more thorough and effective action than the bark, but still cannot cover the generality of cases like quinine; it is, however, very useful in such cases of hectic fever and of diarrhoea where irritation and inflammation precludes the use of quinine.

The bark of Salix (various species) is official in the U. S. Ph., as is also Salicin.

PART USED AND PREPARATION.—The fresh bark, gathered during the budding season, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it, and the rest of the alcohol added. The whole is then poured into a well-stoppered bottle, and allowed to macerate for eight days in a dark, cool place.

The tincture thus prepared is, after straining and filtering, opaque. In thin layers it has a deep crimson color; its odor is sweet and balsamic; its taste extremely astringent, snuff-like, and bitter; and its reaction acid.

CHEMICAL CONSTITUENTS.—Salicin, C₁₃H₁₈O₇. This glucoside of the aromatic group, is found in the young bark of all species of this order, as well as in Castoreum, the preputial follicles of the beaver (Castor Fiber, Linn.). It was discovered by M. Buchner in 1828,* and two years afterward detected by M. Leroux;† though its first isolation from this species was by M. Becker.‡ Pure salicin crystallizes in colorless prisms melting at 198° (388.4° F.), and decomposes at higher temperatures, yielding a resin, water, and salicylous acid. It possesses a bitter taste, and is soluble in 28 parts of cold water and in 30 parts of alcohol.

Saligenin, or Oxybenzyl Alcohol, $C_8H_8O_2$, is obtained by acting upon an aqueous solution of salicin at 80° (176.6° F.) with saliva or emulsion:

\[
\text{Salicin, Water, Glucose, Saligenin.} \\
C_{13}H_{18}O_7 + H_2O = C_6H_12O_6 + C_7H_9O_2.
\]

Saligenin results in small, brilliant rhombic plates, that melt at 82° (179.6° F.) and sublime above 100° (212° F.). It is soluble in alcohol and in hot water.

Saliretin, $C_{14}H_{16}O_5$, one of the oxybenzyl compounds, is formed by heating salicin with hydrochloric acid. It results as a yellowish amorphous powder.

Helecin, $C_{10}H_{16}O_7$.—This glucoside may be obtained by oxidizing salicin or saligenin with dilute nitric acid. It results as crystals, having a slightly bitter taste.

Salicylous Acid, or Salicylaldehyde, $C_7H_6O_2$, exists naturally in the leaves of the Meadow-sweet (Spirea Ulmaria). It can be obtained from salicin by distillation with dilute sulphuric acid and potassium dichromate. It results as a fragrant, colorless, oily liquid, having an odor similar to that of almond oil, and a burning aromatic taste; it boils at 196° (384.8° F.); congeals at 20° (~4° F.) into a translucent crystalline mass; has an acid reaction to litmus; and is soluble in water and alcohol.

[Salicylic acid, $C_7H_6O_3$, is a by-product of the above distillation, and only differs chemically from salicylous acid in having one atom more of oxygen in its composition.] (Et supra, Schorlemmer, Wittstein, Thomson.)

Tannin, resin, gum, sugar, and other general plant constituents are also present.

PHYSIOLOGICAL ACTION.—The symptoms caused in Dr. Duncan's experiments with the drug are concisely as follows:* Nervousness and irritability; giddiness; swelling of right parotid gland; painful flatulence; diarrhoea; pain in right hip; feeble pulse; sleeplessness; and alternate heat and coldness followed by morning perspiration.

DESCRIPTION OF PLATE 161.

1. End of a leafing branch.
3. Scale and stamen.
4. Stamen.
5. Double anther.
(3-5 enlarged.)

Pópulus Tremulóides, Michx.
N. ORD.—SALICACEÆ.

GENUS.—POPULUS,* TOURN.

SEX. SYST.—DICEIA OCTANDRIA.

POPULUS.

AMERICAN ASPEN.

SYN.—POPULUS TREMULOIDES, MICHX.

COM. NAMES.—AMERICAN ASPEN† OR POPLAR; † UPLAND OR WHITE POPLAR; ‡ POPLE; (GER.) PAPPEL.

A TINCTURE OF THE FRESH INNER BARK OF POPULUS TREMULOIDES, MICHX.

Description.—This upland tree seldom reaches a height of over 40 feet. Bark smooth and greenish-white, except that of the old trunks; branches somewhat angular; buds large, scaly, and covered with a reddish-brown resinous varnish. Leaves orbicular-cordate, mostly broader than long, smooth and dark-green on both sides, and tipped with a short, sharp point; serrations small, nearly regular; margin downy; petiole long and slender, laterally compressed to such extent as to make it nearly ancipital. This position of the flattened petiole at right angles to the leaf-blade accounts for the agitation of the leaf during the slightest zephyr. Inflorescence dioecious, the male and female flowers in long, axillary, drooping, loosely imbricated aments, appearing before the leaves; scales oblong, cuneate, lacinate-lobed; lobes 3 to 4 linear, pointed, the margins fringed with long cilia; flowers one to each scale, springing from a calyx-like urceolate torus, which is obliquely truncated anteriorly. Stamens about 12; filaments distinct, capillary; anthers large and drooping, more or less quadrangular in form. Style none; stigmas 2, elongated, sessile, each bifurcating into linear lobes. Fruit an oblong or oblong-ovoid, pointed, 1-celled capsule, distinctly raised upon a peduncle; seeds ovate, numerous, minute, covered with a copious wool.

History and Habitat.—This beautiful white-trunked forest-tree, whose leaves have become the synonym of trembling, is indigenous to most parts of North America, where it is common on hillsides and in open forests. It blossoms in March or April, and fruits before the leaves are developed in May. Its wood is light and of an inferior quality, except for the lighter household utensils and the manufacture of certain chip hats. The Cree Indians—according to Mr. Walter Haydon, who has resided for some time in the Hudson Bay territory—esteem the

* The ancient name, Arbor Populi, from its having been planted to shade the public walks; or, according to Bullet, because the constant motion of the leaves resembles that of the populace.
† Or asp, from the German espe, a generic vulgarism.
‡ Sometimes applied to the Yellow Poplar or Tulip tree, Liriodendron tulipifera (Magnoliaceæ).
§ The white poplar is properly the British Abele, Populus alba, Linn.
inner bark (which they call *Metoo*) for food in early spring, considering it also as a gentle laxative and remedy for coughs. Mr. Haydon says he has eaten pounds of it without ill effects. It is very tender and sweet, and has a pleasant flavor.* The leaves and young shoots of Poplar are said to be gathered in Sweden and kept for sheep fodder in winter—a practice as old as the time of the Romans. In Kamtchatka the inner bark is used for making into bread in times of scarcity.

The previous uses of Poplar bark in medicine are all embodied in the following paragraph from Dr. C. A. Lee's article on "Indigenous Tonics:"† "The therapeutical properties of the Poplar are supposed to be nearly, if not quite, identical with those of the willow. As an anti-periodic, it has been used successfully in the treatment of intermittents, and also as an ordinary tonic, where such remedies are indicated. We have good reason for believing that its tonic properties are considerably superior to those of salix; especially its anti-periodic power, and that there are few indigenous tonics superior to it in a certain class of cases, especially intermittents. As a stomachic tonic, the tincture has been extensively used in domestic practice, and with satisfactory effects; also, as a vermifuge. It is thought by many to possess decided alterative properties, and those who have watched its effects closely, consider it diuretic, diaphoretic and a general depurant. It has been strongly recommended in jaundice, and in suppression and retention of urine."

PART USED AND PREPARATION.—The fresh inner bark, gathered as the leaves are falling, is treated as in the preceding drug. The resulting tincture is opaque in layers of an inch or more. In thin layers it is of a beautiful, deep, brownish-crimson color by transmitted light; its odor is rich and woody; its taste extremely bitter and astringent, the sensation lasting a long time without losing its intensity; and its reaction acid.

CHEMICAL CONSTITUENTS.—*Populin, C_{20}H_{22}O_{3}(H_{2}O).* This aromatic glucoside was determined by Braconnot in 1830.‡ It exists in company with *salicin* in the bark and especially the leaves, from which it may be separated by precipitating it with the carbonate of potassium from the aqueous solution. Populin crystallizes in very light, white, satiny, voluminous needles, having a bitterish-sweet licorice-like taste. It loses all its water of crystallization at 160° (212° F.), fuses at 180° (356° F.), and decomposes at higher temperatures, yielding benzoic acid. The crystals are only slightly soluble in water, more so in alcohol, and readily in dilute mineral, and acetic acids. Upon boiling with baryta water it breaks down into *salicin* and benzoic acid, and in dilute sulphuric acid into benzoic acid, glucose, and *saliretin.* This body is very similar in its properties and reactions to *salicin,* from which it seems to differ only in being in intimate combination with benzoic acid.

\[
\text{Salicin.} + \text{Benzoic Acid.} + \text{Populin.} = C_{15}H_{18}O_{7} + C_{7}H_{6}O_{2} = C_{20}H_{22}O_{3}(H_{2}O).
\]

Oil of Populus.—This body, obtained by aqueous distillation of the leaf buds, is colorless, lighter than water, and has a pleasant balsamic odor. The name Tacamahaca has been improperly applied to this product, to which, however, it bears no resemblance except, mayhap, in its odor.* The name was probably applied here on account of the oil having been extracted from the buds of the Balsam Poplar or Tacamahac (Populus balsamifera, Linn.).

Salicin;† starch, resin, and gum have also been determined.

PHYSIOLOGICAL ACTION.—Very few symptoms have as yet been credited to this drug, our experience with it being mostly clinical. Poplar bark, however, causes increased secretion of urine, nausea and vomiting, slight purging of bilious matters, and burning in the stomach.‡

DESCRIPTION OF PLATE 162.

1. A branchlet with half-ripe fruits, from Binghamton, N. Y., May 5, 1885.
2. A scale.
3. Pistil.
4. Fruit.
5. End of leafy branch.
6. A leaf.
(2-4 enlarged.)

* Tacamahaca is a solid resinous product of the South American Elaphrix tomentosum, Jacq. (Barchaceae.)
† See preceding plant, 161.
Abies Nigra, Poir.
N. ORD.—CONIFERÆ.
S. ORD.—Abietineæ.
GENUS.—ABIES,* TOURN.
SEX. SYST.—MONOECA MONADELPHIA.

ABIES NIGRA.

BLACK SPRUCE.

SYN.—ABIES NIGRA, POIR.; PINUS NIGRA, AIT.; ABIES DENTICULATA, MICHX.; PINUS RUBRA, LAMB.
COM. NAMES.—BLACK SPRUCE, DOUBLE SPRUCE; (GER.) SCHWARTZ-TANNE.

A TINCTURE OF THE GUM EXUDATION OF THE TRUNK OF ABIES NIGRA, POIR.

Description.—This beautiful evergreen tree attains a growth varying between 30 and 70 feet in height, and 15 to 50 feet in breadth at the base. Leaves acerate, short, quadrilateral, very dark green, and projecting in all directions. Anthers tipped with a rounded, recurved appendage; pollen similar to that of Pinus—i. e., of three united grains.† Cones ¾ to 1½ inch long, ovate or ovate-oblong, mostly recurved, persistent, hanging from or near the ends of the branches especially at the summit of the tree; scales thin, rigid, persistent on the axis; edges generally eroded; seeds and their wings about two-thirds the length of the scale.

Abies.—This, the genus Abies of Linnaeus, Tournefort and others, is synonymous with Picea of Link, but not with the genus Picea of Linnaeus. It is characterized as follows: Buds scaly; leaves short, persistent, all of one form and foliaceous, scattered, or more or less 2-ranked, never fascicled. Flowers monoeccious. Fertile catkins lateral or terminal on the branches of the preceding year; sterile catkins scattered, or sometimes clustered, in the axils of the leaves of the previous year’s growth. Cones pendent, at the base of the new growth of the season; scales or flat open carpels imbricate, thin and even (not prickly-tipped nor thickened), situated in the axil of a bract; bracts subtending the scales, very small. Seeds 2, inverted, adhering to the base of each scale; foramen looking downward; testa smooth, coriaceous or ligneous; wing membranaceous. Embryo in the axis of the albumen; albumen saccous or oleaceous; cotyledons 2 to 15.

Conifereæ.—This superb and wide-spread family is composed of evergreen (Ex. Larix) trees or shrubs, with branching, generally excurrent, trunks, rich in

* The classical Latin name.
† Or a single grain with bulged extremities, sometimes described as two grains with a curved connective.
gummy or resinous juice. Wood somewhat intermediate between woody fibre and vessels, and marked in circular disks. Leaves scattered or fascicled, sometimes opposite, linear, awl-shaped or acerose, rigid, and generally evergreen. Inflorescence amamentaceous; flowers monoecious or dichious, destitute of calyx or corolla. Fertile flowers: pistils absent, or represented by an open scale or metamorphosed leaf; sterile flowers consisting of one or more stamens; stamens generally monadelphous, situated upon an axis, thus forming a loose, deciduous catkin or spike. Fruit varying greatly in the different tribes, from a hard, bony nut with an edible "meat," to a soft, edible drupe. Carpels either wanting or represented by an open scale; ovules orthotropous, naked, not enclosed in an ovary; embryo consisting of a pair of opposite, or several whorled cotyledons.

This family of plants is one producing many valuable drugs, useful exudations, varied woods, and ornamental trees. Of the drugs, exudations, and constituents, the turpentines, balsams, and pitches rank highest. They are in general as follows: The common European and Russian turpentines, Terebinthina vulgaris, are derived from Pinus sylvestris, Linn.; the common American turpentine, Terebinthina vulgaris, together with common frankincense, Thus Americana, a concrete oleo-resin, and Oleum Terebinthinae, from Pinus australis, Michx. (P. palustris, Mill.), and Pinus Taeda, Linn.; Canada balsam and Terebinthina Canadensis, from Abies balsamea, Marsh. (A. balsamifera, Michx.; Pinus balsamea, Linn.; Picea balsamea, Loud.), and from Pinus Frazeri; while Canada pitch, Pix Canadensis, is yielded by Abies Canadensis, Michx. Austrian turpentine is derived from Pinus Laricio, Poir.; Bordeaux turpentine, or galipot, from Pinus pinaster, Ait. (P. maritima, DC.); Strasburgh turpentine, Terebinthina argentoratensis, from Pinus Picea, Linn. (Abies Picea, Lindl.; Abies pectinata, DC.); Venice turpentine, Terebinthina Veneta or lariiciina, from the European Abies Larix, Lam. (Pinus Larix, Linn., Larix Europae, DC.); Pacific coast turpentine from Abies Menziesii, Lindl.; Damarra turpentine from Damarra australis; and the Chilian Dombeya turpentine from Dombeya excelsa. Hungarian balsam, Balsamum Hungaricum, is a product of Pinus Pumilio, Willd.; and Carpathian balsam of Pinus Cembra, Linn., and Pinus pinea, Burgundy pitch, Pix Burgundica, is derived from Abies excelsa, DC. (Pinus Abies, Linn.); while Pix Nigra or Arida, together with Pix Liquida, otherwise known as Archangel or Stockholm tar, are obtained upon destructive distillation of various coniferous roots, but especially those of Pinus sylvestris, Linn., and Pinus Ledebouri, Endl. (Larix Sibirica, Ledeb.). Rosin, Resin or Colophony, is the residue after the distillation of volatile oil from the turpentine of Pinus palustris, Mill., and other species. Juniper tar, Pyroleum Oxycedri or Oleum Cadinum, is a product of the Cade (Juniperus oxycedrus, Linn.). Morocco, or Barbarian Sandarach, is obtained from Callitris quadrivalvis, Vent. Rich. (Thuja articulata, Desf.); Gummi Orenburgense and Manna of Briançon from Abies Larix, Lam.; Oil of Savin from Juniperus Sabina, Linn.; and Fructus Juniperi from Juniperus Virginiana, Linn. Edible nuts are produced by Pinus pinea, Pinus Cembra, and Pinus Lambertiana; edible drupes by Taxus baccata, and beverages by Abies nigra, in America, and Dacydium taxifolium, in New Zealand.
We have provings in the Homœopathic Materia Medica of the Scotch fir, *Pinus sylvestris*; the sugar-pine, *Pinus Lambertiana*; savin, *Juniperus Sabina*, and of *Cupressus australis*, besides those members of the order treated of in this work.

History and Habitat.—*Abies nigra* is a native of the Northern States of America, as far west as Wisconsin, and of the Canadas and British America, where it flowers in early spring and matures its fruit in autumn. The black spruce greatly resembles the Norway spruce (*Abies excelsa*, Lindl.) in its growth, and is judged by many prominent arborists and arboriculturists to be much more graceful in the dropping curves of its branches and the luxuriance of its foliage; its twin species, the white spruce (*Abies alba*, Michx.), is certainly one of the very finest of all evergreens.

Concerning the uses of this tree, and other American spruces, Rafinesque says,* "The bark of spruce trees is sudorific, and in extensive use for tanning leather;† also to dye of a brick-red color. The inner bark is used by empirics, in powder and tea, for bowel and stomach complaints, rheumatism, and gravel. The timber is valuable for masts and spars," in fact the most valuable we have for use in this direction. "The resin exuding from the trees is nearly like frankincense. Josselin says that it is very good in powder over wounds to reproduce the flesh. Spruce beer is an American beverage, made by the Indians with twigs and cones of spruces, boiled in maple syrup. Now it is chiefly made with molasses and yeast; when no spruce is put in, it is only molasses beer. The proper spruce beer is a palatable and healthy drink, powerfully antiscorbutic. The discoverers of Canada were cured of the scurvy by it, since which it has become in common use in Canada, the Northern States, and even in Europe. The essence of spruce‡ is an article of exportation, used as naval stores; spruce beer may be made by it in a short time, and anywhere."§

Abies nigra has no officinal recognizance in the Pharmacopoeias.

PART USED AND PREPARATION.—Take two parts by weight of the gum, dissolve in nine parts of 95 per cent. alcohol, and filter. This tincture has a beautiful orange color by transmitted light, the full odor and taste of raw spruce gum, and an acid reaction.

CHEMICAL CONSTITUENTS.—The resin of this species is scanty and insufficient to produce pitch or turpentine in marketable quantity. The "essence of spruce," before mentioned, probably contains an essential oil. The tincture contains a large quantity of resin; more in fact than that of *Abies Canadensis*. The specific chemical bodies and properties are unknown.

† Abies Canadensis, Michx., Hemlock spruce.
‡ A concentrated aqueous decoction of the young twigs.
§ Spruce beer may be made from the extract as follows: Take one part of essence of spruce and seventy-six parts of water, boil, strain, allow to cool, and add ninety-six parts warm water, seven parts molasses and one part of yeast. Allow the mixture to ferment, and bottle strongly while fermenting.
PHYSIOLOGICAL ACTION.—Our proving of this drug by Dr. Leaman,* though exhibiting a few quite specific symptoms, does not afford an insight into the primary action upon the system.

DESCRIPTION OF PLATE 163.

1. Distant view of tree, Binghamton, N. Y.
2. Branch-tip, with winter cones.
3. Seed.
4. Outer aspect of scale.
5. Inner aspect of scale, one seed gone.
6. End of branch, with female catkin.
7. Male catkin.
8. Fertile flower from female catkin.
9. Face view of ruptured anther-cell, with its scale (enlarged).
10. Profile of same (enlarged).
11. Pollen × 150.

Abies Canadensis, Michx.
ABIES CANADENSIS.

HEMLOCK.

SYN.—ABIES CANADENSIS, MICHX.; PINUS CANADENSIS, WILLD., LINN.; PINUS-ABIES CANADENSIS, MARSH.

COM. NAMES.—HEMLOCK, HEMLOCK-SPRUCE, HEMLOCK-FIR; (GER.) CANADISCHE EDELANTANNE.

A TINCTURE OF THE FRESH BARK AND YOUNG BUDS OF ABIES CANADENSIS, MICHX.

Description.—This evergreen forest tree attains a height of from 60 to 80 feet, and a width of 40 to 60. Trunk 2 to 3 or more feet in diameter, excurrent but tending to deliquescence; wood coarse and poor, it weighs 23 lbs. per cubic foot and has a sp. gr. of .384; branches horizontal,* the uppermost pendulous at their apices. Leaves stiff, short, flat, linear, obtuse, irregularly crowded, but mostly spreading in two directions, thus appearing 2-ranked; they are dark, rich, glossy green above, and whitish by a single silvery line each side of the midrib underneath, making a branch upturned by the wind appear silvery-white; petioles short and slender. Sterile aments small, globose, composed of a few stamens, and surrounded at the base of the column by a few erect, brownish scales; filaments short; anthers capitate, with an apiculate crest; cells 2, confluent; dehiscence transverse; pollen simple, saucer-shaped. Cones ovoid, persistent, small, ¼ to 1 inch long, pendent on the ends of the declined branchlets of the preceding year; scales few, thin, markedly imbricate, obtuse, ligneous, with a coriaceous edge; longer than the bracts and persistent on the axis; bracts broadly ovate, truncate. Seeds with a long, thin, membranaceous wing, greatly resembling in outline that of the fly. Read Abies and Coniferae, under the preceding drug.

History and Habitat.—This common native tree is, when young, the most graceful of our evergreens. It is hardy, yet delicate in its outline, its feather-tipped branches reminding one of the plumose ends of a bouquet of pampas grasses. When old it grows more rugged and sombre, but increases in the picturesque. Its foliage is soft to the hand, beautiful in sunshine and shadow, and rests the snow-blinded eye with that peace that verdure resplendent in light and

* My father, an excellent artist and etcher, kindly sketched, at my instigation, the trees in Plates 164 and 165. In this figure he unfortunately allowed his ideas of the picturesque, to somewhat supersede mine of the horizontality, of the branches.
shade alone can give. Hemlock-spruce abounds in the northern United States, the Canadas and British America, extending a little farther south than the black-spruce, with which it forms immense forests in the north. It flowers in May and ripens its cones in autumn.

Hemlock bark is largely used in tanning; though inferior to oak, its greater abundance predominates in its favor in this country. The timber, as before hinted, is very coarse-grained and poor, yet in thoroughly-protected places it is very durable; in carpentry it is used extensively for joists, scantling, girders and sub-flooring.

The stimulating effect of hemlock is well known and greatly utilized. A tired hunter arises fresh and invigorated from his bed of hemlock boughs, and the patient of the city physician, seeking health in our northern interiors, finds supreme comfort in a bath, in which hemlock leaves have been slowly steeping for some hours before his ablution, and quiet, refreshing slumber awaits him upon his couch of soft branches. A strong decoction of hemlock bark has received the praise of empirics and the laity as an astringent enema in diarrhoea and injection for leucorrhoea, prolapsus uteri, etc.; the oil as a liniment in croup, rheumatismus and other disorders requiring its stimulant action; and the essence as a diuretic and a remedy to allay gastric irritation and colic, and to correct acidity of the stomach. A decoction of the bark has been used to produce abortion with dangerous effects, tending toward serious peritonitis. Pregnant ewes are said to lose their lambs from gnawing the bark of the hemlock.

The officinal part of this species in the U. S. Ph. is *Pix Canadensis*; its preparation *Emplastrum Picis Canadensis*.

PART USED AND PREPARATION.—The fresh bark and young buds are pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, and after mixing the pulp thoroughly with one-sixth part of it, the rest of the alcohol is added. After stirring the whole well, it is poured into a well-stoppered bottle and allowed to stand eight days in a dark, cool place. The tincture, separated by filtering, should be opaque in quantity, and show a deep, reddish, orange-brown color in thin layers; it should retain the exact odor and taste of the bruised leaves and branches, and exhibit a strongly acid reaction.

CHEMICAL CONSTITUENTS.—*Pix Canadensis* (Hemlock pitch, Hemlock gum, Canada pitch). This substance, the prepared resinous exudation from the trunk of the hemlock, is hard and brittle in cold weather, soft and conforming in the warmer seasons, and melts at 198° (388.4° F.). It is of a dark yellow-brown color when fresh, but oxidizes and becomes almost black on exposure. It contains a resin, and a volatile oil, uninvestigated, but supposed to be similar to the turpentine obtained from *Abies balsamea*.

Oil of Hemlock (oil of spruce). This essential oil is obtained on distillation of the leaves, a process carried on to a large extent in some portions of the State of New York.

Ut supra, Flück. & Han. Pharmacographia.
As far as I can determine, this tree has not been specifically examined as to its constituents.

PHYSIOLOGICAL ACTION.—Abies Canadensis causes, according to Gatchell,* vertigo and weakness; great hunger, with burning and distention of the abdomen; thirst; increased heart’s action; restlessness and chilliness; the urine is increased and of a straw-color. The drug appears to cause a torpor of the liver, resulting in a diminished secretion of bile, pain in the right shoulder-blade, and constipation.

DESCRIPTION OF PLATE 164.

1. Tree, Binghamton, N. Y.
2. A winter spray in fruit.
3. Leaf, under surface.
4. Seed (slightly enlarged).
5. Inner face of a scale, with one seed removed.
6. Outer view of a scale.
7. Male catkin (enlarged).
8. Stamen (enlarged), showing the dehiscence of the anther-cell.
9. Pollen, two views, x 200.

Thuja Occidentalis, Linn.
N. ORD.—CONIFERÆ.
S. ORD.—CUPRESSINEÆ.
GENUS.—THUJA,* TOURN.
SEX. SYST.—MONCECIA MONADELPHIA.

THUJA.

AMERICAN ARBOR VITÆ.

SYN.—THUJA OCCIDENTALIS, LINN.; CEDRUS LYCEA, GER.
COM. NAMES.—AMERICAN ARBOR VITÆ, WESTERN ARBOR VITÆ, TREE OF LIFE, WHITE CEDAR,† HACKMATAOK,‡ THUJA; (FR.) THUIA DU CANADA; (GER.) LEBENSBAUM.

A TINCTURE OF THE FRESH YOUNG TWIGS, LEAVES, AND BLOSSOMS OF THUJA OCCIDENTALIS, LINN.

Description.—This spiry evergreen attains a height of from 20 to 50 feet, though generally not above 40, and a diameter of about 10 to 20 feet through the greatest breadth of foliage. Sprays or branchlets very flat, spreading, and ancipital. Leaves small, appressed, tightly imbricated in 4 rows, persistent. They are of two kinds on alternate or separated branchlets; one form is awl-shaped; the other short, squamose, and obtuse; both forms have a small flattened dorsal gland, filled with a thin aromatic turpentine. Inflorescence minute, terminal, ovoid aments; flowers monoeccious on different branchlets; fertile aments composed of a few imbricated scales. Filaments forming scale-like connectives, bearing 4 concave anther-cells. Cones nodding, ovoid before ripening, spreading or gaping when mature; scales blunt, arranged in three rows of two scales each, attached to the rachis by their bases, the outer pair seedless; rachis composed of three nearly separate metamorphosed scales, each tipped with a rounded stigma-form body (Fig. 7). Seeds 6, double-winged, 2 in each of the second pair of scales.

* Concerning the etymology of Thuja, Dr. Mayrhofer says (Essay on Thuja occidentalis, Metcalf's Provincis, N. Y., 1853): “In the time of Francis I, king of France, this tree was imported into France from Canada. The first specimen was seen by Clusius in the royal garden of Fontainebleau, and a tolerably correct figure and description of it were furnished by him under the name of arbore vita. (Caroli Clusii Rario. Planar. Histor., 1601.) The Greek name Θυξα, also Θυξια or Σια, from Θυξα, suffr., to fumigate, points to a resinous tree, and is first seen in Theophrastus Lesbius, a disciple of Aristotle. In his work, 'ελεγκτα θυξιαία, he describes a tree resembling the cypress, and called Θυξια (Θυξια) or Σια (Σια, species). Roman authors Latinized the word Σια, changing it to Thya, Thuya, Thuia, Thuja, as Σια, gen. Σιας, was changed to thia, gen. tharis, and the word eunymphs, to cupressus. The native region of the Thuja of Theophrastus, according to his account, is the territory of Cyrene, in Africa, and especially the region in which the temple of Jupiter Ammon was situated; whereas our Thuja is a native of North America.” It would seem by this that the Thuja of Theophrastus is Thuja articulata, Vahl., a native of Barbary.
† The true white cedar is Cupressus thyoides, Linn.
‡ The hackmatack is Larix Americana, Michx.
1 in each of the inner pair;* wings lateral, equal; apparently emarginate, but on close inspection it will be seen that one wing is attached to the seed on a higher plane than the other (Fig. 11). *Colyledons 2. Read description of Coniferae, under Abies nigra, 163.

History and Habitat.—This beautiful native tree abounds in the upper zones of North America, from the State of Pennsylvania northward, where it often forms what are commonly known as cedar-swamps. It grows upon the rocky banks of rivers and in low, swampy spots, blossoming from May until June, and maturing its fruit in autumn. The Arbor Vitae assumes a conical form with such true lines as to appear "clipped," thus forming one of our most valued high-hedge trees. Its use in this direction is enhanced by the fact that it bears the shears well, and remains in full foliage, and beautiful, in any form to which it may be cut. The wood is light and soft, but extremely durable; it is seldom used, however, on account of the smallness of the trunk affording lumber of no useful size. There are four other species of this genus out of cultivation, viz.: the Chinese *Thuja orientalis*, the Javanese *Thuja dolabrata*, the Barbarian *Thuja articulata*, and the *Thuja cupressoides* of the Cape of Good Hope.

Concerning the previous medical uses of this plant, Rafinesque covers it almost fully in stating:† "Ointment of fresh leaves with bear's fat, excellent for rheumatism; decoction useful in coughs, fevers, cachexy, scurvy, gout, etc.; distilled water for dropsy; poultices of the cones and *polypodium,*‡ in powder with milk, remove the worst rheumatic pains." Farther uses are given in later works. The most striking to us as homeœopaths is that of an application of the tincture to venereal warts (condylomata), which it removes in from three to four weeks. This is especially proven by Hahnemann, who says:§ "The following list of the pure symptoms|| caused by this powerful plant furnishes to the homeœopathic physician the means of applying it with advantage in the treatment of certain serious diseases for which no remedy has hitherto been found. He will see, for example, that the juice of the Thuja should cure specifically 'condylopes vénériens,' when not combined (or complicated) with other diseases; and experience proves that it is the only effectual means to employ against this affection."

Thuja was added to the U. S. Ph. at the last revision.¶

PART USED AND PREPARATION.—The fresh branchlets, leaves, and flowers are chopped and pounded to a pulp and weighed. Then two-thirds by weight of alcohol are taken, the pulp thoroughly mixed with it, and the whole strained through a piece of new linen, and allowed to stand eight days, in a well-stoppered

* Dr. Torrey, in his *Flora of the State of New York*, says, "Seeds 2 (or by abortion 1) under each scale." Prof. Asa Gray says, in his *Lessons in Botany*, 1874, "each bearing 2 erect ovules." I examined, upon this point, from twenty to thirty cones, taken separately and carefully from different branchlets on each of a dozen or more trees, to corroborate the statement made as above. All cones examined answered the description I have given.

† *Medical Flora*, vol. 2, p. 258.

‡ *Polypodium vulgare*, the common polypody or female fern. Dr. John King, in his *American Dispensatory*, makes this read *Polidium*. It matters little.

¶ *Loc. cit.*

¶ That great process, which added *Sapo Viridis*, while it dismissed *Arsenicum.*
bottle, in a dark, cool place. The tincture, separated from this mixture by filtration, has a deep orange-brown color by transmitted light, an odor of the bruised leaves, a bitter and astringent taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—*Thujin*, C$_{29}$H$_{22}$O$_{12}$. This glucoside occurs in the green parts of the plant. It forms glistening, lemon-yellow, minute crystals, having an astringent taste, and soluble in both water and alcohol.

Thujetin.—C$_{28}$H$_{28}$O$_{16}$. When thujin is heated with a dilute mineral acid, it breaks down into glucose, and this new crystalline body, soluble in alcohol, insoluble in water:

\[
\text{Thujin} + \text{Water} \rightarrow \text{Glucose} + \text{Thujetin}
\]

Thujenin, C$_{28}$H$_{24}$O$_{14}$. If, however, hydrochloric acid is used and the heating less prolonged, another crystalline body is yielded, having the composition above given, and differing chemically from thujetin by its containing (H$_2$O)$_2$ less. Its solubility is the same:

\[
\text{Thujenin} + \text{Water} \rightarrow \text{Glucose} + \text{Thujenin}
\]

Thujetic acid, C$_{28}$H$_{22}$O$_{13}$. When thujin is dissolved in baryta water, it takes up one molecule of water, leaves its glucose in the menstruum, and forms a yellow solution, which, on boiling, deposits orange-yellow crystals of this acid, having the same solubility as the preceding resultants:

\[
\text{Thujin} + \text{Water} \rightarrow \text{Thujetic acid}
\]

Pinipicrin, C$_{32}$H$_{36}$O$_{11}$. This glucoside has been extracted from the young leafy branchlets of this tree as well as from the needles of *Pinus sylvestris*. It forms a yellow, bitter, amorphous, hygroscopic powder, soluble in both water and alcohol, and becoming liquid at 100° (212° F.). Like all glucosides, it breaks down under the addition of water, when heated with dilute mineral acids. In this instance, boiling with dilute sulphuric acid converts this body into glucose and ericinol:

\[
\text{Pinipicrin} + \text{Water} \rightarrow \text{Glucose} + \text{Ericinol}
\]

Oil of Thuja.—This colorless or greenish-yellow volatile oil, has a camphoraceous odor and taste, is soluble in alcohol, has a density of 0.925, boils at 190° (374° F.), and for the greater part at 193° to 197° (379.4° to 386.6° F.). It is a mixture of two oxygenized oils. (Wittstein.)

* *Thujeigenin, Thujeigenin.*
† Fownes's *Elementary Chemistry*, p. 582.
‡ See under Ericaceae, 100.
Pino-tannic acid,\(^*\) \(\text{C}_7\text{H}_8\text{O}_4\). This acid may be extracted from the green portions of the tree. It results as a brownish-yellow powder, becomes soft and glutinous at 100\(^\circ\) (212\(^\circ\) F.), and dissolves readily in both water and alcohol. (Wittstein.)

Kawalier\(\dagger\) determined, beside the oil, thujin, pino-tannic acid, and pinipicrin, a gelatinous compound, sugar, tannin, and two uninvestigated resins.

PHYSIOLOGICAL ACTION.—"The pathogenesis of Thuja was published by Hahnemann in the fifth volume of the *Reine Arzneimittellehre.*

"The Austrian provings, which are entirely confirmatory of Hahemann’s, show that the main action of Thuja is on the genito-urinary organs, with the anus, and on the skin. It causes copious and frequent urination; burning in several parts of the mucous tract; pains of various kinds in the penis; inflammation of the prepuce and glans; ulcers, tubercles, and other excrescences on the sexual organs, with itching and profuse sweating; and, in the female, leucorrhoea. The sexual appetite was depressed, and the catamenia retarded. Burning, itching, swelling, and mucous discharge occurred at the anus; and on the skin generally, but especially in the ano-genital region, tubercles and warts were developed. In the neighboring mucous membranes similar phenomena appeared, but naturally of moister character."\(\dagger\)

The action of the drug in causing great flatulence and distension of the abdomen, with rumbling and colic, leads us back to Bocclerus, who says,§ "*Folia (thujæ) resolvunt, exsiccant, flatus pellunt,*" etc.; while the excessive chilliness, heat, and profuse sweat, point to a remedy often indicated in intermittent fevers. The peculiar action of this drug is one difficult of explanation.

* Description of Plate 165.

1. Distant view of tree; Binghamton, N. Y.
2. A winter branch in fruit.
3. A cone.
4. Scale of outer row.
5. Scale of 2d row.
6. Scale of inner row.
7. Centre scales or rhachis.
8. Male catkin (enlarged).
9. Female catkin (enlarged).
10. Inner view of outer scale.
11. Seed (enlarged).

\(\dagger\) Hughes, *Pharmacodynamics*, 1876, p. 745.

* Pini-tannic acid.

\(\dagger\) Chem. Gaz., 1859, pp. 61 and 88.

* Cynosura *Materia Medica Pauli Herrmannii*, editio ii, 1747.
JUNÍPERUS VIRGINIANA, Linn.
N. ORD.—CONIFERÆ.
Tribe.—CUPRESSINEÆ.
GENUS.—JUNIPERUS,* Linn.
SEX. SYST.—DIECIA MONADELPHIA.

JUNIPERUS VIRGINIANANA.

RED CEDAR.

SYN.—JUNIPERUS VIRGINIANANA, LINN.; JUNIPERUS SABINA, HOOK.
(NOT LINN.).
COM. NAMES.—RED CEDAR, JUNIPER, OR SAVIN; PENCIL CEDAR; (+R.)
CÉDRE DE VIRGINIE; (GER.) VIRGINISCHE CEDER, ROTH CEDER.

A TINCTURE OF THE FRESH TWIGS OF JUNIPERUS VIRGINIANANA, LINN.

Description.—This evergreen species often attains a growth of from 60 to 90
feet in the East, though in the West it seldom grows much larger than a full-sized
shrub. Wood very durable and compact, odorous, and of a reddish color. Branches
more or less horizontal. Leaves small, usually opposite in pairs, not articulated,
connate-decurrent upon the stems, awl-shaped, flattish, and scalaceous; upon the
young branches acute, flattish, appressed imbricate, and often furnished with a
dorsal resin-gland; midrib or nerve none. Inflorescence small catkins terminating
lateral branchlets; flowers dioecious, or in some cases monoeious. Fertile catkins
ovoid, scales 3 to 6, scarious, coalescent, each ovuled, and all uniting in fruit to
form a berry. Sterile catkins formed of 3 to 6 peltate scales; anther-cells at the
base of the scales. Fruit a small, roundish-ovoid, berry-like drupe, erect upon its
pedicel-like branchlet and covered with a bluish bloom. Seeds 1 to 3, bony, wing-
less; the lower portion covered with a scarious membrane, smooth; the upper
traversed by a smooth ridge, dividing it into two verrucose parts; cotyledons two.

History and Habitat.—The Red Cedar is common in sterile, dry soils in nearly
all portions of North America, Japan, and the West Indies, flowering in May.
This tree is noted, above all others in this country, for the durability of its
wood, no matter how exposed to changes of weather; many of the houses along
the Jersey shore of New York Bay, built in the early days of the present century
and shingled with cedar, have roofs still in excellent condition, and many posts for
the support of outbuildings still stand stanch and firm. The highly-colored and
fragrant heart-wood is largely used in the manufacture of lead-pencils, pails, tubs,
and various household utensils subjected to wettings. Boxes made of the wood

* Celtic, *Jeneprus*, rough, from the scaly foliage.
are useful for the preservation of woollens and furs, it being an excellent insectifuge; for this purpose, also, many people scatter the chips in their closets, trunks, etc.

Sir W. Hooker considers Juniperus Virginiana identical with the European J. Sabina, the only true point of distinction being in the fruit (Figs. 6 and 8); that of J. Virginiana being erect and somewhat ovate, while that of J. Sabina is pendent or at least pendulous, larger, and more spherical. The leaves of J. Virginiana are much less rich in oil, the yield being nearly eighteen times less from this species than from Sabina.

The leaves of the Cedar are used by the Cree Indians as a diuretic;* they also form a good epispastic when made into a cerate; the berries, in decoction, are diaphoretic and emmenagogue; the oil is largely used as an application in arthritic and podagric affections, rheumatic, rheumatoid, traumatic; and the excrescences (cedar apples), often found upon the branchlets, are quite extensively used in domestic practice, in doses of from ten to thirty grains every four hours, as an anthelmintic.

In reference to the Western Juniper, *Juniperus occidentalis*, Mr. J. R. Dodge says:† "The fruit of this tree is a large and tuberculated berry, sweet and nutritious, especially when it is first ripe; nevertheless it has a resinous taste, similar to that of all Junipers. It is largely consumed by the Indians of Arizona and New Mexico, who gather great quantities for winter store. When dried and ground into flour, mixed with water, kneaded into a hard mass, and dried in the sun, it has a chaffy look, a brownish-yellow color, is very light, easily digested, and not offensive. Mexicans consume this fruit in large quantities, and it constitutes an article of trade among them."

Juniperus Virginiana is not officinal in the U. S. Ph. In the Eclectic Materia Medica the preparations are: *Oleum Juniperi Virginianae* and *Linamentum Olei*.‡

PART USED AND PREPARATION.—The fresh young twigs, gathered in May, are dealt with as in the preceding drug. The resulting tincture has a deep reddish-brown color by transmitted light, a strong balsamic odor, a bitterish, astringent and pleasant terebinthic taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—*Cedren, C_{13}H_{24}*§ This aromatic body, having no camphoraceous odor, a specific gravity of 0.948, and boiling at 237° (458.6° F.), may be obtained from the liquid portion of the oil that distils over at 264°–268° (507.3°–514.4° F.), by redistillation over metallic potash.

Oil of Cedar.—This aromatic oil is obtained from the wood by distillation, one bushel of chips yielding about a half pint. When extracted, it results as a soft white crystalline mass at 27° (80.6° F.), having a peculiar aromatic odor; when dry it distils almost entirely at 282° (539.6° F.). Cedar oil has a more feeble odor than that of Sabina, and a different polarity.

‡ *Oils of Cedar, Cajeput, Cloves, and Sassafras.*
§ Gerhardt (Wittstein).
Cedren-Camphor, $\text{C}_{10}\text{H}_{26}\text{O}$.—This aromatic, almost tasteless body, may be extracted from the oil from which it results as satiny needles, soluble in alcohol, and fusing at 79° (174.2° F.).

A bitter extractive, gum, fatty matter, resin, and tannic acid, have also been separated from the plant.*

PHYSIOLOGICAL ACTION.—Dr. C. A. Lee records a case of a woman who took an ounce of the oil to produce an abortion. Her symptoms were: Rigors; fever; thirst; raving while in fever, exhausted when out; vomiting of black then green matter; griping pain in the bowels; great difficulty in passing urine; uterine hemorrhage, accompanied with labor-like pains; great purging, with stupor without being able to regain consciousness, and death. Many other cases of poisoning by the oil taken in doses of from one drachm to an ounce, for the purpose of abortion or as an emmenagogue, show Juniperus Virginiana to cause severe venous congestion throughout the body. The class of symptoms are in general as follows: Raving or quiet delirium, followed by stupor; pupils dilated; veins of face, head, and neck fully distended; face swollen and livid, or lurid; great thirst, nausea, and vomiting; abdomen swollen, hot, and very painful; great heaving of the chest in effort at inspiration, with stertor and a general appearance of impending apoplexy; slow pulse; and violent convulsions.

DESCRIPTION OF PLATE 166.

1. End of fruiting branch, Ithaca, N. Y.
2. End of fertile branchlet.
3. Sterile flower head.
4. Scale of staminate rachis, showing unopened anthers.
5. Same, with anthers open.
6. Fruit.
7. Seed.
8. Fruit of *Juniperus Sabina*.

(2–5 and 7 enlarged.)

PLATES 167 TO 178.

SERIES

PHÆNOGAMIA.

Plants producing true flowers and seeds.

CLASS

MONOCOTYLEDONS.

Plants whose stems exhibit no distinction as to bark, wood and pith; the woody fibre and vessels being in bundles and scattered in the cellular tissue. Leaves generally parallel-veined and entire. Embryo containing a solitary cotyledon.

[To precede plate 167.]
N. ORD.—ARACEÆ.

GENUS.—ARISÆMA,* MART.

SEX. SYST.—MONOECA POLYANDRIA.

ARUM TRIPHYLLUM.

INDIAN TURNIP.

SYN.—ARISÆMA TRIPHYLLUM, TORR.; ARUM TRIPHYLLUM, LIÑN.; ARISÆMA ATRORUBENS, BLUME.

COM. NAMES.—INDIAN TURNIP, JACK-IN-THE-PULPIT, MEMORY-ROOT; (FR.) GOUET À TROIS FEUILLES; (GER.) DREIBLÄTTIGER ARON.

A TINCTURE OF THE FRESH CORM OF ARISÆMA TRIPHYLLUM, TORR.

Description.—This excessively acrid, almost caustic, erect herb, grows to a height of from 8 to 20 inches. Root a coarsely reticulated or wrinkled corm, giving off numerous branched rootlets from its juncture with the stalk. Stalk composed of the united petioles and scape, sheathed below by a few long membraneous scales. Leaves one or two, on long petioles, ternately divided; leaflets elliptical-ovate, pointed. Scape central, smooth, surmounted by a single spadiceous flower. Spathe convoluted below, expanded and forming an incurved arch above, covering the opening of the tube, green externally and brownish-purple within (A. atrorubens?); or green without and within (A. triphyllum?). Spadix elongated, club-shaped, obtuse and naked above, longer than the tube of the spathe, constricted below and bearing the flowers at its insertion in the base of the spathe. Flowers monoeious or sometimes androgy nous by abortion. (Out of over five hundred specimens, green and purple, examined this spring (1884) only one androgynous spadix was found. In this the sterile flowers were, as usual, above the fertile.) Sterile flowers composed of a cluster of closely-appressed anthers; filament very short and comparatively thick; anthers 2-4 celled, opening at their summits by a pore or chink; pollen globular, transparent, the outer coat closely and regularly beset with minute knobs. Fertile flowers densely crowded in rows upon the lower portion of the spadix, like corn upon its cob, each flower consisting of a single pistil; ovary globular, 1-celled; style just apparent; stigma capitate, fringed; ovules orthotropal, standing erect from the base of the ovary. Fruit after the decay of the spathe and extremity of the spadix, composed of few or many 4- to 6-seeded scarlet berries; embryo in the centre of the albumen.

* 'Aris, arum, and σέμα, sema; marked arum, in allusion to the marked spathe. Arisarum, Tourn.
Araceae.—This order is composed of plants having fleshy corms or rhizomes, or, in the tropics, sometimes woody climbers, an acrid or pungent volatile juice, and monoeocious flowers situated upon the same spadix, destitute of floral envelopes, their place being generally filled by a spathe; their fruit is a berry, the seeds of which abound in mealy albumen, or the embryo large and fleshy. The leaves are generally compound, with sheathing petioles, and more or less reticulate veined. The genera are mostly tropical. Besides the genera Arisæa and Symplocarpus, finding representation in this work, the following members of this family are of interest to us: Caladium seguinnum and esculentum, Dieffenbachia seguina, one of the most virulent of vegetable poisons, and Arum dracunculus, Italicum, and maculatum.

History and Habitat.—The Indian Turnip grows plentifully about boggy spots in deep, rich woods. It is indigenous to most portions of the United States and Canadas, flowering in May and fruiting in September. The corms, when fresh, especially, and all parts of the plant, have a severely acrid juice, imparting an almost caustic sensation to the mucous membranes, and swelling of the parts when chewed. This action upon the mouths of school-boys, who often play the trick of inviting bites of the corm upon each other, gave rise to the common name, "memory-root," as they never forget its effects. This acridity, however, is dissipated by heat or drying, the roots then becoming very nutrient and palatable, the fecula of the corm forming an excellent "arrow-root." The yield of nutrient matter is said to be about one-fourth the whole substance of the corm. This point is fully appreciated by the Indians of this country, who consider the roots a delicacy, either roasted or boiled. I have roasted them myself, when a boy, and enjoyed a repast very pleasing to an empty stomach. Slices of the fresh root, frequently laid upon the skin, are said to cause vescication.

Arum triphyllum is not officinally recognized in either the U. S. Ph. or Eclectic Materia Medica.

PART USED AND PREPARATION.—The fresh root, gathered before the expansion of the leaves, should be carefully bruised in a covered mortar and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it, and the rest of the alcohol added. After stirring the whole well it should be placed in a well-stoppered bottle and allowed to stand at least eight days in a dark, cool place. The tincture, separated by straining and filtering, should have a pale-brownish-yellow color by transmitted light, a slightly sweetish taste, entirely devoid of acrimony, and a neutral reaction to test-paper.

In order to preserve the acrimony of the root, Dr. E. M. Hale recommends rapid trituration in ten parts by weight of coarse sugar-of-milk, and keeping the preparation in hermetically-sealed jars, protected against heat and light. The provings were made with dilutions.

CHEMICAL CONSTITUENTS.—The acrid principle of this plant, as before intimated, is rapidly dispersed by heat. Dr. Bigelow states that this body escapes as an inflammable gas, slightly explosive when mixed with air. The extreme vola-
tility of this body has precluded the determination of its chemical characteristics. No other active body has been determined, though some principle other than the acrid body seems to reside in the corms. Starch, gum, and sugar have been isolated.

PHYSIOLOGICAL ACTION.—From personal observations and the literature upon this plant, its action, when fresh, seems to be quite similar to that of strong liquor ammonia, causing as it does an irritation and burning of mucous membranes and acceleration of secretions. The provings have developed a train of symptoms very characteristic, and therefore useful, but not belonging under this rubric.

DESCRIPTION OF PLATE 167.
1. Young plant, from Binghamton, N. Y., May 27, 1884.
2. Corm.
3. Female spadix.
4. Fertile flower—*f. c.*, pistil (enlarged).
5. Sterile flower—*f. c.*, stamen (enlarged).
6. Pollen x 200.
ARUM DRACON'TIUM.

GREEN DRAGON.

SYN.— ARISÆMA DRACON'TIUM, SCHOTT; ARUM DRACON'TIUM, LINN.

COM. NAMES.— GREEN DRAGON, DRAGON ROOT; (FR.) GOUET A DRAGON; (GER.) DRACHEN ARON.

A TINCTURE OF THE CORM OF ARISÆMA DRACON'TIUM, SCHOTT.

Description.— This peculiar herb usually attains a growth of from 1 to 2 feet. Corms clustered, wrinkled, but not so markedly reticulate as in the preceding species; stems (if so they may be called) numerous from the same fascicle of corms. Leaf usually solitary, pedately compounded of from 7 to 13 oblong-lanceolate, pointed, and entire leaflets. Inflorescence in a mostly androgynous but sometimes polygamous spadix that tapers to a long, exserted, and more or less contra-curved point; spathe green, scaphoid, open along the inferior surface, and more or less convolute, especially about the apex of the floral portion of the spadix. Fertile flowers numerous, inferior, each composed of a single turbinate or quadrangularly compressed pistil; style peltate over the summit of the ovary; stigma a nipple-like projection at the summit of the style; ovules 6 to 8, erect. Sterile flowers superior, each composed of a single 4-celled stamen; filament short and thick. Fruit a globular head of orange-red berries; rachis flat; seeds 1 to 3 in each berry. Read description of Araceæ, under the preceding plant.

History and Habitat.—The Green Dragon is indigenous to the United States from Florida northward. It grows along the banks of rivers, where it flowers in May and ripens its brilliant fruit in September.

This plant was introduced into English gardens in 1749. It has gained no medical history whatever, its little employment having been in connection with *A. trip'hyllum* without distinction.

PART USED AND PREPARATION.—The fresh corms, gathered before flowering or after the fruit has fallen, are treated as in the preceding species. The resulting tincture has a slight straw tint by transmitted light, no distinguishing odor, a cold, biting taste, and an acid reaction.

PHYSIOLOGICAL ACTION.—The symptoms caused in the prover, Dr. C. P. Hart,* by doses of from fifteen grains to one drachm of a mixture of one oz. of the

expressed juice of the corms with nine ounces of sugar of milk, were quite similar to those caused by *A. tryphillum*: Prickling pains, dryness, then catarrhal secretion from the larynx and bronchial tubes, hoarseness; great prostration; increased heart’s action; dyspnoea; rattling of mucus on expiration; muco-purulent expectoration, composed mostly of thick, heavy, yellowish pus; and increased urination.

Description of Plate 168.

1, 2, and 3. Whole plant, Pittsburgh, Pa., June 10th, 1875.
2. Leaf (four times reduced).
4. Spadix.
5. Sterile flower.
6. Fertile flower.
7 and 8. Sections of the pistil.
(4–8 enlarged.)

N. ORD.—ARACEÆ.

GENUS.—SYMPLOCARPUS,* SALISB.

SEX. SYST.—TETRANDRIA MONOGYNIA.

POTHOS.†

SKUNK CABBAGE.

SYN.—POTHOS FœTIDA, MICH.; ICTODES FœTIDUS, BIGEL.; DRACONTIUM FœTIDUM, L.; SYMPLOCARPUS FœTIDA, SALISB.; (?) ARUM AMERICANUM, CATESBY.

COM. NAMES.—SKUNK CABBAGE, SKUNK WEED, POLECAT WEED, MEADOW CABBAGE, FœTID HELLEBORE, (FR.) POTHOS FETIDE, (GER.) STINKENDE DRACHENWURZEL.

TINCTURE OF THE FRESH ROOT OF DRACONTIUM FœTIDUM,‡ L.

Description.—A low-spreading ill-favored weed; growing profusely in swamps and on bottom lands. Root perennial, from 3 to 5 inches long, and about 2 inches thick, of a reddish-brown color externally, terminating abruptly where it gives off numerous crowded rootlets, which penetrate the boggy earth, its habitat, to a depth of from 6 inches to 2 feet or more. Stem none. Leaves numerous, not appearing until the ovules are fertilized; they are large, ovate, entire, smooth, longitudinally furrowed by the thick pale ribs, cordate at the base, with an acute tip, and spring from the root on long petioles, deeply grooved on their upper aspect, and sheathed at their lower juncture. The flowers are inclosed by the spathe, a fleshy, ovate, shell-form, swelling body, generally about 4 inches long, by from 2 to 3 inches in the greatest diameter; this hood has an auriculate base, an acute tip and infolding edges, which are at length coalescent. The spadix, fully sheltered in the basal cup of the spathe, is ovoid-globose, about 1 inch long by one-half to three-quarters of an inch in diameter, situated upon a short peduncle, and completely invested by the perfect tetrandrous, purplish flowers. Calyx composed of four fleshy, wedge-shaped sepals, whose inflected tips and edges match so perfectly those of the neighboring flowers as to completely cover the spadix, making a solid body of perianths. Stamens four, situated opposite the sepals, which, with their subulate filaments, they fully equal in length. Anthers oblong, extrorse, with two parallel cells. Pollen grains quite small considering the size of the plant, and greatly resembling, under the microscope, pointed grains of wheat. Ovary one-celled, with a single suspended anatropous ovule. Style four-angled, pyramidal. Stigma minute, pubescent. Fruit compound, consisting of the enlarged fleshy spadix together with the perianths, making in all a spongy, soft, glutinous, uncanny, ill-smelling mass, inclosing near the surface the ovoid, bullet-

* From συμπλεκτής, connection, and κάρπος, fruit, alluding to the coalescence of the ovaries into a compound fruit.
† The name under which the plant was proven, see first synonym.
‡ Using the name as applied by the “Am. Hom. Phar.,” see third synonym.
like seeds; destitute of albumen, but containing a large, fleshy, globular embryo, several plumules and a radicle. A general description of the class and order will be found under Arum triphyllum.

History and Habitat.—This is our only species of the genus; still it is regarded by the laity as one too many, on account of its very offensive and penetrating odor, which, though individualizing this plant, is still not peculiar to it alone, as the fruit of some of our wild currants, especially Ribes rigens, when crushed, emit a scent very similar to it.

In earliest spring, by carefully examining boggy grounds, one may notice the points of many spathes just appearing above the soil, from which they soon arise and mature before the leaves expand. The fruit ripens in September, usually after the leaves have all decayed. The rapidity with which this plant matures is so great that in some seasons a second appearance of the spathes is made in November.

This is one of the plants often wrongly classified, being a kind of broken link in the chain of Araceae. The genera Pothos; Arum; Dracontium; Symlocarpus (without affinity) and Orontium, to which it has been successively assigned, will not admit it; we, therefore, must agree with Dr. Bigelow's observations and accept his expressive name, Ictodes foetidus.* Concerning the cross-fertilization of this plant I have noted the following: the pollen when mature falls from the anthers in such large quantities that the cup-like base of the spathe is covered to a depth of a line or more; wallowing about in this fertilizing element may be found numerous carrion beetles attracted hither by the odor of the plant, which undoubtedly misleads them in their search for food. In this way, through their wanderings to and fro, fertilization is produced by their apparently aimless crawling about over the spadix and base of the spathe. They are prevented from spending valuable time upon the inner walls of the spathe, by its varnished smoothness and perplexing curves, which keep them up to their work. Those that visit the interior of a spathe before the pollen is discharged, are compelled to remain until the anthers are ripe, for it is not until then that the trap-like formation opens sufficiently at the base to permit easy exit. Much pollen is lost by being devoured by the numerous slugs that crawl into the spathe.

The skunk cabbage is not official in the U. S. Ph., having been dismissed. In the Eclectic Materia Medica the use of this drug, especially compounded with others, is considerable.

*Tinctura Symlocarpi, Pulvis Lobeliae Compositus, Pulvis Asclepiae Compositus, Tinctura Lobeliae Composita, Tinctura Lobelia et Capsici, Tinctura Sanguinaria Compositus and Acetata, Tinctura Viburnii Composita.

The fresh or dried fleshy fruits, divested of the seeds, and mashed with an equal portion of Indian meal, have been used in this neighborhood (Central New York) to great extent, and with excellent success, as a poultice for caking mammae, promptly, in many instances coming under my notice, dissipating the hardness and restoring the glands to health.

* ixr6, vierra, w. w., olea, Skunk oil.
PART USED AND PREPARATION.—The fresh root and rootlets gathered in the spring are chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, and after thoroughly mixing the pulp with one-sixth part of it, the rest of the alcohol is added. After having stirred the whole, pour into a well-stoppered bottle and let it stand eight days in a dark, cool place. The tincture is then separated by decanting, straining, and filtering. Thus prepared it is of a light brown color by transmitted light, a slightly acrid taste, and neutral to litmus papers.

CHEMICAL CONSTITUENTS.—The properties of this plant have not as yet been determined by analysis, but may doubtless be referred to a principle volatile in its nature, as drying for any length of time dissipates both the odor and acridity, and heat applied rapidly removes all its active properties. An analysis reported by Mr. J. M. Turner in “American Journal of Pharmacy,” vol. 2, p. 1, seems to prove the above to be the case. He, however, obtained from his assay a volatile fatty body, a small amount of volatile oil, resin, fixed oil, wax, starch, sugar and gum.

PHYSIOLOGICAL ACTION.—The root when chewed produces irritation of the mouth and fauces, acting also as a stimulant to the secretory glands of the mucous membrane. Taken into the stomach it causes vertigo, nausea, sometimes vomiting and temporary blindness. Its volatile properties probably suggested to palliative practice its use in hysteria and spasmodic asthma, though the provings do not show it curative yet in those disorders.

DESCRIPTION OF PLATE 169.

1. Whole plant four times reduced.
2. Spathes; Bergen, Jersey City, N. J., March 1st, 1880.
3. Stamen (enlarged), inner view.
4. Ditto, outer view.
5. Pistil (enlarged).
7. Seed.
8. Section of Rootstock.
9. Roots.
CYPRIPEDIUM PUBESCENS.

YELLOW LADY'S SLIPPER.

SYN.—CYPRIPEDIUM PUBESCENS, WILLD.; CYPRIPEDIUM LUTEUM, AIT.(?)

COM. NAMES.—LARGER YELLOW LADY'S SLIPPER, MOCCASIN FLOWER, AMERICAN VALERIAN, YELLOWS, NOAH'S ARK, YELLOW UMBIL, NERVE-ROOT; (FR.) SABOT DE VENUS JAUNE, CY-PERIPEDE JAUNE; (GER.) GELEBFRAUENSCHUH.

A TINCTURE OF THE FRESH ROOT OF CYPRIPEDIUM PUBESCENS, WILLD.

Description.—This beautiful, pubescent herb, grows to a height of from 1 to 2 feet. Root horizontal, cylindrical, thickly beset with fibrous rootlets. Stem simple, erect, leafy to the top. Leaves large, ovate, or ovate-lanceolate, pointed, prominently many-nerved, plicate, and sheathing at the base. Inflorescence terminal; flowers single or in pairs, scentless. Sepals 3, two of which are united under the lip, elongated lanceolate, brownish or purplish, pointed, and spreading. Petals lanceolate, undulate and twisted, brownish or purplish, pointed, narrower than the sepals; sac, lip, or labellum roundish, shorter than the sepals and petals, much inflated above, horizontal, laterally compressed, convex, pale yellow. Column short, declined; stamens 3, the two fertile ones situated each side of the column. The body that answers to the stamen in other orchids is but rudimentary in this genus; and situated on the upper side of the column, covering the whole style. It is dilated-triangular or heart-shaped and pointed; filaments short; anthers 2-celled, opening by the face of the cells becoming filmy and glutinous, causing it to be ruptured when touched; pollen mealy-pulverent, adhering to the detached portions of the cell-face. Style a broad, terminal, obscurely 3-lobed, roughish, moist disk.

Orchidaceæ.—This vast order of striking and strangely beautiful plants is characterized as follows: Herbs of varied aspect, often epiphytes. Roots often tuberous or tuber-bearing. Leaves alternate, parallel veined. Flowers irregular, each subtended by a bract, and assuming such varied forms as to often resemble birds, insects, etc.: perianth of 6 parts (calyx 3, corolla 3); one of the petals, the upper one, is termed the labellum or saccate lip; this, by the twisting of the ovary or axis, becomes generally anterior. A column, composed of the united filament and style, renders the essential organs gynandrous. Stamen single (Ex. Cypripé-
dium), fertile; **filament** combined in the column; **anther** 2-celled, sometimes deciduous; **dehiscence** sometimes opercular, sometimes accomplished by a disintegration of the face of the cell; **pollinia** composed of one or two masses of pollen-grains in each anther-cell; **pollen** waxy or mealy-pulverent. **Ovary** inferior, 1-celled, 6-ribbed, sometimes twisted; **placenta** 3, parietal; **style** forming a part of the column; **stigma** a viscid, concave disk in front of the column. **Seeds** minute, innumerable; **testa** reticulate.

It would seem an almost essential feature of Orchidaceæ that some part or organ of each plant should be twisted.

Our materia medica contains but one drug from the family, besides the one under consideration, viz., the European lady's tresses (*Spiranthes autumnalis*, Rich.).

Two other members are well known—vanilla (*Vanilla planifolia*, Andrews), and the mucilaginous nutritive Salep, a preparation of the tubers of several species of the genera *Orchis* and *Eulophia*. A few other species are sometimes referred to in medicine—a West Indian stomachic (*Bletia verecunda*, R. Br.), a Guinean purgative and Tortolan anthelmintic (*Epidendrum bifidum*, Aubl.), an Indian vermifuge and diuretic (*Epidendrum auriculatum*), a reputed American remedy for scrofula (*Goodyera pubescens*, R. Br.), and a masticatory in toothache (*Arethusa bulbosa*, Linn.). There are also three genera whose tubers yield an excellent glue: the South American *Catasettium* and *Cyrtopodium*, and our *Aplectrum*. Rafinesque says: *"The orchidaceous plants which have long roots, like the cypripedium, appear to have different properties from those which have round or oval tubercles."

History and Habitat.—The Larger Yellow Lady's Slipper is indigenous to the lower parts of Canada, and the northern and western United States, growing in bogs and wet, shady woods, where it blossoms from May until June. This plant was introduced into medical literature by Rafinesque, who says:† "Of this beautiful genus, all the species are equally medical; they have been long known to the Indians. . . The most efficient is the *C. luteum*. . . They are sedative, nervine, antispasmodic, etc., and the best American substitute for valerian in almost all cases. They produce beneficial effects in all nervous diseases and hysterical affections, by allaying pain, quieting the nerves and promoting sleep. They are also used in hemicrania, epilepsy, tremors, nervous fever, etc., . . . having no baneful nor narcotic effects. The dose is a teaspoonful of the powder, diluted in sugar-water, or any other convenient form." The above uses of the powdered root have been corroborated fully in domestic practice.

Cypripedium is officinal in the U. S. Ph. as *Extractum Cypripedii Fluidum*, from both *Cypripedium pubescens*, Willd., and *C. parviflorum*, Salisb. The preparations in the Eclectic Materia Medica are: *Extractum Cypripedii Alcoholicum*, *Extractum Cypripedii Fluidum*, and *Tinctura Serpentaria Composita*.‡

† Ibid., pp. 143-4.
‡ Aristolochia, Ipecacuanha, Crocus, Camphora, and Cypripedium or Opium.
PART USED AND PREPARATION.—The fresh root, gathered in early spring, or in autumn, is chopped and pounded to a fine pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it, and the rest of the alcohol added. After a thorough mixture is made, pour it into a well-stoppered bottle, and let it stand eight days in a dark, cool place.

The tincture, separated from this mass by filtration, should have a beautiful crimson color by transmitted light, a nauseous fecal odor, a taste somewhat similar to that of the black walnut, and an acid reaction.

CHEMICAL CONSTITUENTS.—An analysis of the root by H. C. Blair* resulted in the separation of a volatile oil and acid, tannic and gallic acids, two resins, and the usual plant constituents.

*Cypripedin.† The body sold under this name is simply a mixed mass of all the constituents of the root not soluble in water.

PHYSIOLOGICAL ACTION.—Cypripedium acts as a sedative to the nerves in general, causing a sense of mental quiet and lassitude, and subduing nervous and mental irritation. It seems also to quiet spasms of voluntary muscles, and hysterical attacks, especially in women. This is one of our drugs that has not been sufficiently thought of by provers. It merits a full proving, and would, without doubt, prove more useful if the preparation be made of the whole plant, thus bringing in its action upon the skin, which as yet seems to be little known.§

DESCRIPTION OF PLATE 170.

1. Upper part of plant in flower, Binghamton, N. Y., June 2d, 1884.
2. Lower portion and root.
3. Bird's-eye view of flower (somewhat reduced), showing the third or abortive stamen.
4. Column (enlarged), inner view.
5. Column, outer view, after removal of the abortive stamen.

† Oleoresina Cypripedi.
LACHNANTHES TINCTORIA, EII.
N. ORD.—HÆMODORACEÆ.

GENUS.—LACHNANTHES,* LINN.

SEX. SYST.—TRIANDRIA MONOGYNY.

LACHNANTHES.

RED ROOT.

SYN.—LACHNANTHES TINCTORIA, ELL.; HERITIERA GMELINI, MICHX.; DILATRIS TINCTORIA, PURSH.; D. HERITIERA, PERS.

COM. NAMES.—RED ROOT, SPIRIT WEED, DYERS’ DILATRIS.

A TINCTURE OF THE WHOLE PLANT LACHNANTHES TINCTORIA, ELL.

Description.—This perennial herb grows to a height of from 1 to 2 feet. Rhizome more or less horizontal, cylindrical, ligneous; rootlets fibrous, deep orange-red, mostly springing from the head of the rootstock. Stem erect, simple, hairy above the last leaf. Leaves equitant, sword-shaped, mostly clustered at the base of the stem, those evident on the stem remote, small, and sheathing at the base. Inflorescence a dense, terminal, compound, leafy-bracted cyme; flowers dingy yellow; perianth woolly externally, 6-parted, the three inner divisions larger, the outer three linear. Stamens 3, opposite the larger lobes; filaments dilated below; anthers exserted, linear, versatile, 2-celled, opening longitudinally. Ovary globular, 3-celled, wholly adherent to the calyx-tube; ovules amphitropous; style filiform, exserted, declined, deciduous; stigma evident, capitate. Fruit a globular, 3-angled capsule; placenta fleshy; seeds few in each cell, discoid, concave, fixed by the middle.

Hæmodoraceæ.—This small family of herbaceous plants belongs chiefly to South Africa and Australia, only 3 genera and 4 species being found in the United States. The order is characterized as follows: Roots fibrous, spreading; stem scape-like, leafy; leaves mostly equitant, sword-shaped. Flowers regular and perfect, 3 to 6 androus; perianth tubular, woolly, or mealy outside, 6-lobed, and coherent with a portion or all of the ovary; sepals and petals undistinguishable. Stamens inserted upon the tube of the perianth; anthers intorse. Ovary 3-celled; ovules anatropous or amphitropous, and attached to central placenta; style single and deciduous or 3-partile and persistent; stigma single, or, when 3, then alternate with the cells of the ovary. Fruit a 3-celled, loculicidal capsule, crowned by or enclosed within the persistent perianth; seeds 3-many; embryo small; albumen hard or fleshy, surrounding the embryo.

The only proven plants of this order are those treated of in this work. The roots of several south-tropical species are tonic, bitter, and astringent, while several

* λαχνη, wool; ἀνθως, anther, flower: from the resemblance.
Australian species have roots that, though acrid when in a recent state, form a nutritious food for the natives when roasted.

History and Habitat.—Lachnanthes is indigenous to the United States, growing in sandy swamps from Florida to New Jersey and Rhode Island along the coast, where it blossoms from June to September, according to locality. It was introduced into England as a green-house perennial in 1812, and then propagated from seed.

The root was esteemed as an invigorating tonic by the Aborigines, especially the Seminoles, in whom it is said to cause brilliancy and fearless expression of the eye and countenance, a boldness and fluency of speech, and other symptoms of heroic bearing, with, of course, the natural opposite after-effects. A tincture of the root has been recommended in typhus and typhoid fevers, pneumonia, various severe forms of brain disease, rheumatic wry-neck, and laryngeal cough.

PART USED AND PREPARATION.—The whole fresh plant, while flowering, is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed with one-sixth part of it, and the rest of the alcohol added. After thorough stirring the whole is poured into a well-stoppered bottle, and allowed to macerate for eight days in a dark, cool place.

The tincture, separated from this mass by pressure and filtration, has a brilliant carmine color by transmitted light; no distinguishing odor; a slightly bitter and ligneous taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—The roots yield a fine red dye and a bitter resin, but no analysis has yet been made of the plant that determines the nature of its specific constituents.

PHYSIOLOGICAL ACTION.—Lachnanthes, in doses varying from a few drops to a drachm of the tincture, causes: Mental exhilaration followed by ill-humor; vertigo and headache; brightness of the eye with dilution of the pupil followed by dullness, pressive pains, and impaired vision; tearing in the ears; hectic redness of the cheeks; dryness of the throat; rumbling of flatus in the abdomen; fullness and heat in the chest; increased heart's action; pain and stiffness of the neck and shoulders;* restless; sleeplessness; and coldness and fever followed by sticky sweat. The action of this drug appears, as far as proven, to be quite similar to that of Pulsatilla.

Description of Plate 171.

1 and 2. Whole plant, Landisville, N. J., July 18th, 1885.

3. Section of flower.

4 and 5. Anther.

(3-5 enlarged.)

*I have found Lachnanthes an excellent remedy for rheumatic stiffness of the neck and shoulders, with inability to turn the head without severe pain, especially where the trouble seemed to be first a neuralgia of the fifth nerve then transferred to the neck and shoulder.
ALETRIS.

STAR WORT.

SYN.—ALETRIS FARINOSA, LINN.; A. ALBA, MICH.

COM. NAMES.—STAR WORT, STAR ROOT, AGUE ROOT, AGUE GRASS, ALOE ROOT, BITTER GRASS, BLACK ROOT, BETTIE GRASS, COLE ROOT, CROW CORN, FALSE UNICORN ROOT, UNICORN ROOT, DEVIL'S BIT, COLIC ROOT, STAR GRASS, BLAZING STAR; (FR.) ALETRIS FARINEUX; (GER.) MEHLIGE ALETRIS.

A TINCTURE OF THE FRESH ROOT OF ALETRIS FARINOSA, LINN.

Description.—This prostrate, perennial, spreading herb is characterized as follows: Root cylindrical-tuberous, more or less horizontal, giving off numerous fibres from its lower surface. Stem none; leaves stellate-rosulate, all smooth, flat, thin, coriaceous, pale, sessile and lanceolate acute. Inflorescence in a wand-like, crowded raceme terminating a long, nearly naked, terete and rigid scape, that arises from the axis of the leaf-cluster; flowers nearly sessile, creamy white; perianth tubular-cylindrical, somewhat campanulate, persistent, and cohering below with the base of the ovary; limb 6 cleft; lobes lanceolate-triangular, somewhat spreading. Stamens 6, equal; filaments short, inserted at the base of the lobes of the perianth; anthers included, sagittate, introrse. Ovary globular, 2-celled; ovules anatropous; style subulate, 3-cleft at the apex; stigmas small, minutely 2-lobed. Fruit an ovate-tapering, coriaceous capsule, enclosed in the persistent floral envelope; dehiscence loculicidal; carpels 3. Seeds numerous, ovate, ribbed; embryo minute, roundish, situated near the hilum; albumen fleshy and oily.

History and Habitat.—Aletris is indigenous to North America, where it frequents the borders of wet, sandy or swampy woods from Florida northward, especially at the seaboard.

This plant furnishes one of the many examples of the uncertainty attending the use of vulgarisms in reference to plants, no less than half its common names being also used to designate another plant, our Helonias (Chamaelirium luteum), which it no more resembles than a cucumber does a pumpkin, except mayhap in the root when separate from the rest of the plant; the root of Helonias, however,

* 'Alerpia, Aleria, a female slave, who grinds corn; from the mealy appearance of the perianth.
† The Unicorn is Martynia proboscidea, Glox. (Bignoniaceae).
‡ The name usually designates Chamaelirium luteum, Gray (Liliaceae).
§ More properly a vulgarism of Dioscorea villosa, Linn. (Dioscoreaceae).
|| This name should only indicate Hypoxis erecta, Linn. (Amirillidaceae).
¶ The true Blazing Star is Liatris squarrosa, Willd. (Compositae).
always shows, on section, holes in its cortex, through which the fibrous rootlets pass (see figure, Plate 177); this is not so in Aletris root, and will always serve as a distinguishing point between them.

Aletris was held in high repute by the Aborigines as a stomachic, bitter tonic, and emmenagogue; from them it passed into the hands of the laity and herbalists. Probably the first printed notice of the plant appeared, unnamed, in 1730.* It was introduced into England in 1768, but received little attention except for its extreme bitterness. Pursh speaks of the benefits obtained from this drug in colic; Dr. Cullen recommends it in rheumatism, and Dr. Thacher in anasarca. Dr. Bigelow judges that it probably will prove a tonic bitter of value, remarking at the same time that he knows of no plant which surpasses it in genuine, intense, and permanent bitterness. Rafinesque claims that it relieves flatulent and hysteric colic, speedily avails in fevers, is too powerful for bitters, and in large doses is narcotic. The first notice given of its action upon the female organs of reproduction is in Eclectic practice, where it receives consideration in chlorosis, dysmenorrhœa, engorged uteri, amenorrhœa, and prolapsus.

The official preparation in the Eclectic Materia Medica is Extractum Aletridis Alcoholicum.

PART USED AND PREPARATION.—The fresh root is chopped and pounded to a pulp, and treated as in the preceding drug. The resulting tincture has a clear orange color by transmitted light, no characteristic odor, a very bitter taste, and an acid reaction.

CHEMICAL CONSTITUENTS.—No analysis has yet been made to determine the properties of the bitter principle of this species, which, however, proves more soluble in alcohol than in water. The Tilden's analysis† determines a large proportion of a bitter extractive, resin, and coloring-matter, besides the usual constituents of plants.

PHYSIOLOGICAL ACTION.—Aletris proves, when used in the fresh state, emetic, cathartic, and somewhat narcotic; this mostly disappears on drying. In smaller doses it produces vertigo, stupefaction, colic in the hypogastrrium, and heaviness in the uterine region. The drug deserves a very thorough proving, as, from clinical results, it seems especially adapted to many forms of uterine trouble that appeal to our utmost care.

Description of Plate 172.

1. Whole plant, Landisville, N. J., July 3d, 1885.
2. Flower.
3. Perianth, opened.
4. Stamen.
5. Pistil.
6. Horizontal section of ovary.
 (2–6 enlarged.)

IRIS VERSICOLOR.

LARGER BLUE FLAG.

SYN.—IRIS VERSICOLOR, L., IRIS AMERICANA VERSICOLOR, DILL.

COM. NAMES.—BLUE FLAG, FLOWER-DE-LUCE, FLAG LILY, LIVER LILY;
(FR.) GLAIEUL BLEU; (GER.) VERSCHIEDENFARBIGE SCHWERTLILIE.

TINCTURE OF THE FRESH ROOT OF IRIS VERSICOLOR, LINN.

Description.—This beautiful perennial bog plant attains a height of from 2 to over 3 feet. Root fleshy, thickened, horizontally creeping, giving off from two to four lateral branches, the under surface especially about the annual joints is thickly beset with simple fibrous rootlets. The joints vary from 1 to 4 inches in length, are flattened upon the upper surface, and from three-quarters to one and a quarter inches in breadth. The root is annulated by the scars of previous leaves. The stem is terete, angled on one side, rounded on the other, flexuous, simple or sometimes branched. Leaves sword-shaped, striate, erect, clasping at the base, one to one and one-half feet long, and one-half to one inch wide. Flowers 2 to 6 on each plant, spathacious, large and attractive, peduncles short, flattened on the inner side. Calyx tube funnel-form, prolonged more or less beyond the ovary, shorter than the three divisions (sepals) which are reflexed or spreading and destitute of beard or crest; the three inner divisions of the perianth (petals) are erect, and shorter than the sepals. Stamens 3, distinct, their anthers oblong-linear, hidden under the petaloid branches of the style. Ovary obtusely triangular with flattened sides, 3-celled, each containing numerous anatropous ovules. Pollen grains large, much resembling date stones in form. Style mostly connate with the tube of the perianth, its three branches petal-like, crenate, and more or less reflexed at the tip, each branch bearing a true stigma as a thin lip or plate, on the under surface of its apex. Pod leathery, 3 to 6 angled, 3-valved. Seeds triangularly depressed-flattened. Embryo straight in the hard fleshy albumen. IRIDACEÆ is represented in gardens by the Crocus, Gladiolus and tiger-flower (Tigridia), and wild in the United States by Iris, Pardanthus and Sisyrinchium.

* 'Ips, rainbow deified, applied by the ancients on account of the bright and diversified colors in the blossoms of this genus.
History and Habitat.—This beautiful flower abounds throughout the United States in wet places, blossoming from May to June. Iris was highly esteemed by the Aborigines of this country, as a remedy for gastric disturbances, and also by laymen as a domestic remedy, when ptyalism was considered necessary.

The fresh root pounded to a pulp is considered, and justly, one of the best poultices that can be applied to a felon, often quickly relieving the pain, even when suppuration is far advanced. It will generally too discuss the affection, if applied early in its development.

Iris is officinal in the U. S. Ph. as Extractum Iridis and Extractum Iridis Fluidum. In the Eclectic Materia Medica it is used as above, and as Tinctura Iridis. It is also a component of Syrupus Stillingsiae Compositus.

PART USED AND PREPARATION.—The fresh root. The rhizome of Iris is so often confounded by laymen with that of calamus, that a comparison might be considered in place.

Iris (Blue-flag).
Root horizontal, its sections flattened above. Annular by the scars of leaf-sheaths. The scars of the rootlets crowded mostly near the larger end, on the rounded side. When dry it is grayish-brown externally, and grayish or brownish internally, having a nucleus sheath enclosing a number of scattering bundles of woody fibres. No specific odor, acrid and nauseous to the taste.

Calamus (Sweet-flag).
Root horizontal, nearly cylindrical. Leaf-sheath scars obliquely transverse. The scars of the rootlets upon the under surface are quite regularly arranged in single or double lines that branch alternately, first to one side then to the other. Pinkish or pale-red internally, wood bundles scattered irregularly. An agreeable aroma and a pleasant taste characterize it.

The fresh root, gathered late in autumn or early in spring, is chopped and pounded to a pulp and weighed. Two parts by weight of alcohol are taken, and after thoroughly mixing the pulp with one-sixth part of it, the rest of the alcohol is added. After having stirred the whole, pour it into a well-stoppered bottle, and let it stand eight days in a dark, cool place. The tincture is then separated by decanting, straining, and filtering.

Thus prepared it has a light straw-color by transmitted light, at first a stinging, soon followed by a decided bitter taste, and a very slight acid reaction.

CHEMICAL CONSTITUENTS.—Several analyses of the root of Iris have been made, and all without success as regards the true and specific active principle. D. W. Cressler (Jour. Phar. 1881, 601) arrives at the conclusion that very probably an alkaloid exists in the roots; he also succeeds in extracting a volatile matter, starch, gum, tannin, and fixed oil.

Irisin or Iridin, an acrid resinoid body, results as a constant factor in all the analyses so far made. It occurs as a dark red-brown, viscid liquid, with an odor and taste resembling that of the root.

PHYSIOLOGICAL ACTION.—Iris acts powerfully upon the gastro-intestinal tract, the liver, and especially the pancreas; causing burning sensations and a high state of congestion, as proven by post-mortem examinations of animals after the exhibition of the drug.

It is an excitant of the salivary and biliary secretions, being therefore an excellent remedy to be thought of in ptyalism and obstinate constipation.
The gastro-intestinal effects are: profuse acid vomitings, and frequent watery evacuations, the latter accompanied by severe colic and burning. Upon the nervous system its action is marked, as shown by the severe toxic neuralgias of the head; face, and limbs.

Description of Plate 173.

1. Flower.
2. A branch of the style.
5. Fruit.
7. Pollen grains x 200.
DIOSCOREA VILLÓSA, Linn.
Dioscoreaceae.—This small natural order is represented in North America by this species only, 7 genera and about 150 species being all the representatives known upon the globe, and those are mostly tropical. The plants in general are known by the following characters: Stems twining; roots usually tuberous, large, or sometimes horizontal and knotted. Leaves with a few conspicuous, parallel ribs, otherwise closely-netted, veined; petioles always present. Inflorescence usually in axillary racemes or racemose panicles. Flowers regular. Male flowers: peri-
anth 6-cleft and calyx-like; stamens 3 or 6, perigonous; filaments subulate; anthers globose, introrse, 2-celled. Female flowers: perianth tubular, 3-margined, 6-cleft, adherent to the ovary; ovary 3-celled; ovules anatropous, 1 to 2 in each cell; styles 3, segregrate or nearly so; stigmas linear, spreading. Fruit sometimes baccate, but usually a membranaceous, 3-angled or margined pod. Embryo minute; albumen cartilaginous.

No other species are used in medicine, but a few are worthy of mention here on account of their roots, which, when fresh, are juicy, irritant, and vesicating, but after prolonged boiling are rendered more or less pleasant, and always nutritious, from an abundance of starch. Of all the Yams yielded by this order, the most pleasant is the East Indian Sweet Yam (Dioscorea sativa, Linn.), next to which ranks the White Negro-Yam of India (D. alata, Linn.), which often reaches a weight of 30 pounds, and the Prickly Yam (D. aculeata, Linn.), which is the most generally cultivated form. The Ceylon White Yam (D. bulbifera, Linn.); the Japanese Yam (D. japonica, Linn.); and the Indian Yam (D. trifida, Linn.), are also pleasant and edible. The East Indian Buck Yam (D. triphylla, Linn.), and the Tropical Devil's Yam (D. daemona) remain nauseous, even after prolonged boiling; yet are eaten by the natives in times of need. The Yam is largely cultivated for food in Africa, East and West Indies, and the Southern United States, especially for, and by, the negroes. The roots grow often to a large size, are farinaceous, and considered to be easily digested; they are in general palatable, and are considered not inferior to any root at present in use. They are eaten in lieu of bread, boiled or baked, or dried and ground into flour for bread and puddings.

The Cape Hottentots' Bread (Testudinaria elephantipes, Burch) is often, in times of scarcity, eaten in lieu of Yams, but is a poor substitute. The root of the European Black Bryony (Tamus communis, Linn.), is used as a stimulating poltice; internally it is an acrid purgative, an emetic and diuretic, yet the young shoots are used in lieu of asparagus; and the Candian (T. Cretica, Linn.), is very similar in its properties.

History and Habitat.—Dioscorea is indigenous to North America, where it ranges from Canada and New England, to Wisconsin and southward; it is common, however, only in the South.

The root of Dioscorea Villosa, as it appears in commerce, is of two kinds, so obviously different that, for many years, one sort was thrown out by druggists as spurious. This discrimination so affected the gathering of the roots that what was considered the true root could no longer be procured in sufficient quantity. Diggers finally, on their side, protested and claimed that the two roots came from almost identical plants, and, in order to supply the trade, the wholesale druggists were compelled to accept, although under protest, the product as sent by the gatherers. Mr. C. G. Lloyd finally examined carefully into what made the difference in the rhizoma, and his decision created a new variety of the species which he called var. glabra. The differentiation is as follows:*

Dioscorea Villosa, Linn.
True Wild-Yam Root.

Plant, under general inspection, smaller than the next; isolated.

Leaves more sharply pointed, almost aristate; densely short pubescent beneath.

Rhizome horizontal, about ½ inch in diameter, oval, flattened above and below, seldom branched, but decidedly tubercled by small protuberances that appear like abortive attempts to branch; the upper surface is marked at intervals of about an inch with the scars of previous years' stems.

My herbarium contains three female and four male plants in flower, and one fruiting specimen, representing the States of New York, Pennsylvania, Ohio, Virginia, and Georgia,—all sent to me by botanists, who designated each as D. villosa; according to the above differentiation, two of the females and one male, as well as the fruiting specimen, are var. glabra, Lloyd.

Dioscorea has held a place in domestic and general practice for a long period as almost specific in certain forms of bilious colic, in which it is promptly efficacious; it is also considered diaphoretic, emetic, and expectorant. As a visceral antispasmodic, and remedy for intestinal irritations, it has proved itself a valuable remedy in cholera morbus, spasm of the diaphragm, spasmodic asthma, dysmenorrhea, and kindred afflictions.

Although the leaves of the chestnut are officinal in the U. S. Ph., the root of this valuable plant is not. In Eclectic Practice, the following preparations are used: Decoctum Dioscoreae, and Extractum Dioscoreae.

PART USED AND PREPARATION.—The fresh root of either form, that of the first year preferred, is gathered in September, and chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp thoroughly mixed with one-sixth part of it and the rest of the alcohol added. After stirring the whole well, it is poured into a well-stoppered bottle, and allowed to stand for eight days in a dark, cool, place.

The tincture separated from this mass by straining and filtering, should have a deep amber color by transmitted light; a cherry-like odor; a taste at first woody, then bitter, and an acid reaction.

CHEMICAL CONSTITUENTS.—Dioscorea roots contain, without doubt, an acrid principle, resin, and starch, but as yet they have not been isolated. Dioscorein is not a principle, it being simply an extract embodying the solid constituents of the fluid extract of the root.

PHYSIOLOGICAL ACTION.—The experiments of Drs. Cushing and Burt, with doses of from 5 drops of the tincture to 200 drops of the fluid extract, gave essentially the following symptoms of disturbance: Vertigo and dizziness; heaviness and aching of the head; smarting and soreness of the eyes; irritation and
congestion of the mucous membrane of the nostrils; tongue brown-coated, dry, and stiff; dryness of the mouth, followed by salivation; throat dry and sore; bitter and sour eructations and belchings; nausea, with burning distress, bloating, and cramps of the stomach, which becomes sore and feels raw; hard, dull, or sharp pains in the hepatic region; severe, dull, cutting, and griping pains in the umbilical region; severe abdominal pain, with much flatulent distention; very severe colic, with passage of large quantities of flatulence; itching of the rectum, with prolapsed hemorrhoids; profuse yellow diarrheic stools; great sexual excitement, followed by loss of desire and nocturnal emissions; irritation of the bronchi and lungs; great lumbar pain and weakness; weakness of the extremities; general tired, weak, and faint feelings; itching of the skin; sleeplessness and chilliness.

Dioscorea proves itself an irritant of the mucous membranes in general, but especially those of the intestinal tract, and causes congestion and inflammation of those tissues if persisted in.

Description of Plate 174.

1. Portion of a fruiting stem, Pittsburgh, Pa., Aug. 20th, 1885.
 2. Female flower.
 3. Male flower.
 4. Seed.
 (2–3 enlarged.)
TRÍLLIUM ERÉCTUM Var ÁLBUM Pursh.
TRILLIUM.

BETHROOT.

TRILLIUM ERECTUM, LINN.

SYN.—TRILLIUM RHOMBOIDEUM, VAR. ATROPURPUREUM, MICHX.; TRILLIUM ATROPURPUREUM, BOT. MAG., TORREY; TRILLIUM ERECTUM, VAR. ATROPURPUREUM, PURSH.; TRILLIUM FETIDUM, SALISB.

COM. NAMES.—PURPLE TRILLIUM, BETHROOT, BIRTHROOT, LAMB'S QUARTER, GROUND LILY, RATTLESNAKE ROOT, WAKEROBIN, INDIAN BALM, THREE-LEAVED NIGHTSHADE, INDIAN SHAMROCK; (FR., GER.) TRILLIUM.

TRILLIUM ERECTUM, VAR. ALBUM, PURSH.

SYN.—TRILLIUM PENDULUM, AIT., WILLD.; TRILLIUM RHOMBOIDEUM, VAR. ALBUM, MICHX.

COM. NAMES.—(NOT SPECIFIC.)

A TINCTURE OF THE FRESH ROOT OF TRILLIUM ERECTUM, LINN.

Description.—Trillium erectum.—This common species of the genus is characterized as follows: Leaves just sessile, rhomboid, dilated, nearly as broad as long; base cuneiform or acute. Flower nodding, dull purple, raised upon a peduncle, and having a disgustingly fishy odor; peduncle 1 to 3 inches long, inclined. Petals plane, ovate, acutish, spreading, and caducous. Sepals acute, a little shorter than the petals.

Var. Album.—Leaves not so abruptly taper-pointed as in the species, broader and more fully sessile. Flower odorless, and averaging smaller; peduncle strongly curved. (The flower in the plate is constrainedly elevated to show the markings upon the petals and the color of the ovary); petals plane, greenish- or creamy-white, the veins and veinlets either green or purple.† Ovary deep, dull purple. Stigmas yellow.

Trillium.—This genus is composed of low, perennial herbs. Roots prae Morse, tuber-like, circularly wrinkled, and giving off numerous long, primarily wrinkled, then smooth and branching, fibrous rootlets. Stems simple, smooth, stout, naked below, enlarged at the base, and furnished with several large, membranaceous, lanceolate, acute scales. Leaves 3, in a single whorl at the summits of the stems,

* Trilix, triple, the parts of the plant being in threes.
† In Trillium erythrocarpum, Michx., the purple markings upon the petals are situated at their bases, and are broad, gradually narrowing, to cease in the middle. Petals wavy-edged.
broad and netted veined! Inflorescence single, terminal, sessile, or pedunculated; flowers large, white or purple, sometimes marked. Petals 3, larger than the sepals, withering; sepals 3, foliaceous, lanceolate, and spreading, persistent. Stamens 6; filaments short; anthers elongated, linear, adnate and introrse; cells 2, opening by a lateral, longitudinal fissure; pollen more or less globular, echinate. Ovary pyriform, 3–6 angled; styles 3, distinct down to the ovary, awl-shaped, recurved or spreading, persistent, stigmatic upon their faces. Fruit baccate, 3-celled. Seeds horizontal, a number in each cell, ovoid, with a tumid raphe; embryo minute; albumen dense, sarcous.

Rafinesque, in his Medical Flora, made a grand revision of this genus, naming no less than 19 species, and 68 varieties, including 14 other species, and constituting 3 sub-genera; but Prof. Gray, in his Lessons and Manual, allows but 8 species and 2 varieties in the Northern States.

LILIACEÆ.—This large order of beautiful plants has representatives in all portions of the globe. It consists of herbs or sometimes woody plants springing from bulbs, tubers, or a fascicle of fibrous roots. Leaves simple, clasping at the base. Perianth not glumaceous, free from the ovary; flowers 6-androus, regular, and symmetrical; sepals and petals generally colored alike (Exc. Trillium); stamens 6, one at each division of the perianth; anthers 2-celled, introrse. Ovary 3-celled, free; styles united (Exc. Trillium); stigmas generally 3-lobed; ovules anatropous or amphitropous. Fruit a capsule or berry; seeds few or many in each cell; embryo minute; albumen sarcous.

This important family has been divided by botanists generally, into three, viz., Melanthaceæ, Liliaceæ, and Smilaceæ; other divisions have also been made. It will, however, answer best for us to speak of the drugs and useful plants here, under the headings as tribes or suborders, to agree with the general plan of the work as begun—i. e., according to Prof. Gray's North American Botany. The useful plants of the Melanthaceæ are: The European white hellebore, Veratrum album, Linn.; the Mexican and West Indian Sabadilla, Veratrum Sabadilla, Retz. (Asa Graec officinalis, Lindl., Schænocaulon officinale, Gray); the Mexican Helonias officinalis, Don (Veratrum officinale, Schl.), spoken of as a plant also furnishing cebadilla seeds, is accounted by Flückiger and Hanbury to be synonymous with V. Sabadilla. The root of the poisonous savæja of the Mexicans, Helonias frigida, Lindl. (Veratrum frigida, Schl.), appears to exactly resemble that of V. album;* the rhizomes of Veratrum nigrum, Linn., an Austrian species, are said to be substituted for white hellebore.† The narcotic poison Helonias erythrosperma, Michx. (Melanthium muscætoxicum, Walt.), is said to be used in the Southern States as an insecticide. Concerning this property, Porcher says,‡ the insects are only stupefied, and are generally burned in that state by housewives. The Indian cucumber, Medeola Virginica, Linn., has been used as a diuretic; Melanthium Virginicum, W., is an irritant poison, formerly used as an application in itch. The meadow

* Flück. & Han. Pharmacographia, p. 695.
† Ibid.
‡ Resource South. Field and For., p. 527.
saffron, *Colchicum autumnale*, Linn., is also a member of this section. *Veratrum viride*, Helonias dioica and *Trillium* are represented in this work. *Liliaceae* proper. Under this head are classed the Aloë, Squillae, Allia, etc. Squills, *Squilla* and *Scilla maritima*, Stein., Linn., come to us from the Mediterranean coasts; a milder form, *Squilla Pancracion*, Stein., thought to be the Pancration of Dioscorides, is found, with the previous form, especially at Malta. Other forms of squills are the South African *Urginea altissima*, Baker, the North African *Scilla Indica*, Roxb., and the Abyssinian *Scilla Indica*, Baker. Nearly allied forms, with varied properties, are the Cape Itch-bulb, *Drimia ciliaris*, Jacq., and the Indian emetic, *Crinum toxicarium*, Roxb. The common or Barbados Aloe is the North African *Aloe vulgaris*, Lam. (*A. Barbadensis*, Mill.). The Socotrine Aloe is a product of *Aloe Socotrana*, Lam. (*A. vera*, Miller), growing upon the southern shores of the Indian Ocean, Red Sea, and Island of Socotra. Cape Aloes are said to be derived from *Aloe ferox*, Linn., *Aloe Africana*, Mill., *Aloe spicata*, Thun., *Aloe linguaformis*, *Aloe arborescens*, Mill., *Aloe Commelini*, Willd., and *Aloe purpurascens*, Haw. *Allium sativum*, Linn., the common garlic, is of uncertain nativity; *Allium cepa*, Linn., the common onion, is a native of Egypt; other allied species are the Leek, *Allium porrum*; the Echalotte, *Allium ascalonicum*; Chives, *Allium schoenoprasum*; Rocambole, *Allium scorodoprasum*; the Southern Wild Garlic, *Allium Carolinianum*; and the Meadow Garlic, *Allium Canadense*. The dog's-tooth violet, *Erythronium Americanum*, Ker., was offered by Bigelow as a substitute for Colchicum; the Indian *Erythronium Indicum* is used against equine strangury (Ainslie); and the bulbs of the European *Erythronium dens canis* as a food in Siberia (Pallas). The Lily of the Valley (*Convallaria majalis*, Linn.), a plant whose reputed value in some forms of cardiac diseases is at present before the profession, belongs to this section. The bulbs of *Tulipa gesneriana*, like many other liliaceous bulbs, are used for cataplasms; those of *Tulipa sylvestris* are emetic (Poiret); those of *Fritillaria imperialis*, and *Gloriosa superba*, are violent poisons; while those of *Calochortus elegans* and various species of the genus *Lilium*, form nutritious foods. The North American Indians use as foods the following species under this order: *Kamass root* (*Camassia esculenta*) is eaten raw or cooked; in the latter form it is said to resemble the potato. These roots also yield a very good molasses when boiled in water, and are greatly esteemed by the Nez Perces, Pitt River, and Cape Flattery Indians. Spanish bayonet (*Yucca baccata*): This spiny-leaved plant yields a fruit that nearly resembles in size and shape the West Indian banana. The Indians of Arizona, Utah, and New Mexico are very fond of these fruits, which they either eat fresh, or dry and preserve when ripe, and roast when green together with the young flower buds.* African hemp is a product of several species of *Sanseviera* (Griffith), and New Zealand hemp of *Phormium tenax*. Dragon's-blood, an astrigent resin, long used, is a product of that famous East Indian tree, *Dracaena Draco*. Various pot-herbs are found in this family, the principal ones being *Asparagus officinalis*, *Asparagus acutifolius*, and the South Sea Island Ti-plant, *Cordyline terminalis*. The *Smilaceae* yield Jamaica sarsaparilla, *Smilax offici-
nalis, Kunth.; Vera Cruz or Honduras sarsaparilla, Smilax medica, Schl. & Cham.; and Brazilian sarsaparilla, Smilax syphilitica, Willd. (Pereira). Many other so-called sarsaparillas are derived from various species scattered throughout the more tropical regions of the world. The Javanese China-root, Smilax China, Linn., is a noted alternative; its substitutes and supposed analogues are: the Brazilian China branca e rubra, Japicanga or Ihapecanga, Smilax glauca, Mart.; the Sylhetian Smilax glabra, Roxb.; the Indian Smilax, lanceaefolia, Roxb.; the sweet-tea of New Holland, Smilax glycyphylla, Smith; and the American China-root, Smilax Pseudo-China.

History and Habitat.—Trillium erectum is one of our common indigenous plants, ranging from North Carolina northward. It grows in damp, rich, well-shaded woods, and flowers in the month of May. The variety album is not common eastward; it habits the same localities, and flowers a little later.

Concerning the properties of this genus, Rafinesque, who claims to introduce it into Materia Medica, says:* "Almost all the species may be used indifferently, although the Indians have a notion that those with red blossoms (which they call male) are the best, and those with white blossoms (called female) are best for women's complaints. The species most commonly used, because most common, are the T. nutans (i. e. T. erectum), T. pictum (T. erythrocarpum), T. grandiflorum, T. medium, (T. cernuum), etc. They are all astringent, restringent, pectoral, tonic, antiseptic, alterative, etc. They are employed internally in hematuria, uterine hemorrhage, metrorrhagia, hematemesis, etc. The Indians of Canada and Missouri value the roots much in leucorrhoea, menorrhoea, and as a restringent after parturition." The use of the tubers as an external application in ulcers, inflamed swellings, sores, etc., is similar to that of the liliaceae in general. On account of the acridity of the roots they have been used to promote ptyalism, and are claimed to check epistaxis when a newly-cut root is held to the nose and the acridity inspired.

Trillium is not officinal in the Pharmacopoeias.

Pharmacy.—Considerable doubt exists among our authors and pharmacists concerning which species of this genus should be used for our tincture. I therefore consider it full time, and this the place, to settle upon the most proper source of the drug. Dr. Minton, the original prover—whose MS. is printed in the Encyclopedia, under Trillium cernuum†—informs me that he procured his tincture for proving "from a botanic physician, long since dead;" the species used and the mode of preparation are uncertain. The American Homœopathic Pharmacœia‡ directs the use of T. pendulum, Ait., and describes no distinct species, but approaches nearer T. cernuum than any other. Dr. E. M. Hale says:§ "From the remarks of Dr. John King, in the Eclectic Dispensatory, we learn that it is a matter of indifference which, or how many, species of Trillium go to make up the preparations

* Medical Flora, 1830, pp. 102–3.
‡ Second edition, p. 442.
in use in that school. It is my conviction that no reliable knowledge can be gained by using a preparation made in this loose manner. For use in disease, some definite, reliable tincture, made from a single species should be used. I am satisfied, however, from my inquiries, that none of the tinctures or triturations now in use by homœopathists is prepared from the Trillium pendulum alone. We must adopt one of two methods—either one species exclusively, or several combined in exact proportions.”

On account of its wide range, prolific growth, acridity and evident strength, I deem *Trillium erectum*, Linn., the common purple Trillium, the proper species for homœopathic use. In this I am upheld by Dr. T. F. Allen and others of our most thorough botanically educated physicians. I am assured also that our most important pharmacies in the East use this species, under the label *T. pendulum*; one pharmacy only using *T. petidtdum*. Ait.

In regard to the frequency of the species of Trillium in this State (New York), taking *T. grandiflorum* to be the most common, and giving it the value 10, the value in occurrence of the other species in proportion—according to my personal observations—would be:

PART USED AND PREPARATION.—The fresh tubers should be chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed thoroughly with one-sixth part of it, and the rest of the alcohol added. After having stirred the whole well, pour it into a well-stoppered bottle, and allow it to stand eight days in a dark, cool place.

The tincture, separated from this mass by filtration, should have a light, slightly brownish-orange color, by transmitted light, no distinguishing odor nor taste, an acid reaction, and should raise a soap-like foam on shaking. This tincture will deposit a heavy cream-colored sediment on standing, which can be filtered off without detriment to it. This sediment, when dried, forms an amorphous mass, without odor or taste, and answers to none of the starch tests. It is insoluble in water, alcohol, ether, alkalies, or acids to any extent; melts at 249° (480.2° F.), and burns at a higher temperature with a bright yellow flame, leaving no ash.

CHEMICAL CONSTITUENTS.—*Trilline*. Prof. E. S. Wayne* separated from a tincture of Trillium, a dry, whitish, amorphous, pulverable, powerfully acrid mass, soluble in alcohol, and forming, when shaken with water, a permanent, opaline, frothing, soap-like mixture. A tincture of this body, spread thinly on glass, formed a bright glistening scale.

He also separated a volatile oil, gum, resin, extractive, tannic acid and starch.

I have followed his line of procedure and corroborated his analysis in full, having, however, too small quantities of the resultants to further experiment upon. I shall, next season, analyze the tubers of *Trillium erectum* and other species, to

better settle upon the qualities of this genus, and determine, if possible, its most representative species.

PHYSIOLOGICAL ACTION.—We have a careful proving of Trillium by Prof. Henry Minton, as before mentioned, and some excellent clinical experience; the full action, however, is not yet determinable from these. This certainly is a drug deserving full and careful study and proving, and I promise the fraternity to do my share as fully and promptly as time and material shall render possible.

Description of Plate 175.

Trillium erectum, var. album.

TRILLIUM PENDULUM, AIT.

1. Upper portion of plant, Binghamton, N. Y., May 12th, 1884.
2. Lower portion and root.
3. Stamen (enlarged).
4. Pollen x 280.
5. Pistil (enlarged).
6. Ovary in horizontal section (enlarged).
VERÁTRUM VÍRIDE, Ait.
VERATRUM VIRIDE.

AMERICAN WHITE HELLEBORE.

SYN.—VERATRUM VIRIDE, AIT.; V. ALBUM, MICHX. (NOT LINN.); V. ALBUM, VAR. (?) REGEL; V. PARVIFLORUM, BONG. (NOT MICHX.); V. ESCHSCHOLTZII, GRAY; HELONIAS VIRIDIS, BOT. MAG. 1096.

COM. NAMES.—AMERICAN WHITE HELLEBORE, FALSE HELLEBORE, INDIAN POKE, MEADOW POKE, SWAMP HELLEBORE, ITCH WEED, INDIAN UNCS, PUPPET ROOT, EARTHGALL, CROW POISON; (FR.) VÉRATRE VERT; (GER.) GRÜNER GERMER.

A TINCTURE OF THE FRESH ROOT OF VERATRUM VIRIDE, AIT.

Description.—This pubescent perennial grows to a height of from 2 to 5 feet. Root coarse, thick, fleshy, and more or less horizontal; the lower part throwing off numerous white fibres. Stem erect, simple, stout, and leafy to the top. Leaves 3-ranked, broadly oval, and strongly pointed, plaited, clasping by a sheathed base, and gradually decreasing in size upward to mere lanceolate bracts. Inflorescence a terminal pyramidal panicle, 8 to 18 inches long, composed of dense, spike-like, spreading, loosely floral racemes; flowers monoeconomously polygamous, greenish or olivaceous green. Sepals 6, ovate-oblong, moderately spreading, separate, contracted at the base, clawless and glandless, and entirely free from the ovary. Stamens 6; filaments free from, and shorter than, the sepals, recurving; anthers extrorse, reniform, confluently 1-celled at the apex. Ovules ascending, anatropous; styles none; stigmas 3, ligulate, separate down to the ovary, recurved. Fruit a 3-horned and carpelled, septicidal capsule; seeds 8 to 10 in each carpel, flattish-oblong, with a broad membranaceous margin and an acute apex; embryo oval; albumen sarcous.

Although much like the V. album of Europe in its minor points, yet our species is strikingly different in general appearance. The American species has a much more pointed leaf and its panicle looser and more compound; the racemes of V. album being compact, and, as a whole, cylindrical; while those of V. viride are scattered, compounded, and scraggly.

History and Habitat.—Veratrum viride is indigenous to North America, where it habits low grounds from Canada southward to the mountain meadows of Georgia, flowering in the north in July, and in the south in April or May.

* Vere, truly; atrum, black.
There are four other North American species of Veratrum, all of which may be compared with the species under consideration.

The first account we have of the use of this plant is that of Josselyn* (1638), who speaks of the use of the root as an ordeal by the young Aborigines in the selection of their tribal chiefs—"he whose stomach withstood its action the longest was decided to be the strongest of the party, and entitled to command the rest." Kalm (1749) states† that at the time of his visit here the people used a decoction of this plant externally in the cure of scurvy and to destroy vermin. He also states that corn was soaked in a strong decoction of the root before planting, to protect it against birds, and observed that birds, after eating of this corn, became attacked with vertigo, and in their blind struggling frightened away the balance of the flock; those who ate of the grain, however, recovering from its effects. The first prescriber of the drug in regular practice was probably Dr. John Ware,‡ who used it in the Boston Almshouse in cases of tinea capitis. Dr. Bigelow states§ that during the Revolutionary War, when *V. album* could not be procured, various gouty patients used the American plant with success, not finding a point of difference. It is doubtless right to give Dr. Norwood, of South Carolina, the credit of establishing the proper method of administering the drug,‖ and it was through his use in part that its employment began in England in 1862. Although Dr. Ware was probably the first to experiment with this drug to gain an idea of its physiological action, Drs. Tully and Ives (1830) were the first to investigate its therapeutic action as well. Dr. Charles Osgood, who studied under Professor Tully—modestly giving the professor most of the honor of learning its properties—wrote an excellent essay upon the drug in 1835.‖ Little attention, however, seemed to follow this essay until Dr. Norwood's paper appeared in 1851, from which time the drug gained gradually the prominence it now holds, principally through the efforts of Prof. Samuel Percy in 1856, Drs. Miller, Belden, Cutter, Richard (1858), Ingalls, and Prof. M'Cugin of Iowa (1861).

The principal uses of the drug were as a depressor of the heart's action wherever it was deemed necessary, and an application and internal remedy in arthritic troubles of all kinds; its officinal preparations in the U. S. Ph. being *Extractum Veratri Viridis Fluidum* and *Tinctura Veratri Viridis*.

PART USED AND PREPARATION.—The fresh root, gathered after the leaves have fallen in autumn, is treated as in the preceding drug, excepting that dilute alcohol is used.

The resulting tincture has a brilliant, slightly orange, madder color by transmitted light; a peculiar rich odor and taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—Dr. Chas. Osgood** and Thos. A. Mitchell†† were the first to suspect by analysis that the alkaloid commonly known as Veratrine existed in the species viride, and H. W. Worthington†‡ the first to assert the

* New England Rarities Discovered, Lond., 1672, p. 46; Account of Two Voyages to New England, 1674, pp. 60-76.
† Travels in North America, vol. ii.
‡ Communication to Dr. Bigelow.
†† Ibid., vol. ix.
‡‡ Ibid., vol. x, p. 110.
fact. From this time the chemistry of the plant became a great study by many, principally G. J. Scattergood (1862),* Chas. Bullock (1865† and 1879),‡ Prof. G. B. Wood, E. Peugenet (1872), C. L. Mitchell (1874), Robbins (1877),§ and Wright and Luff (1879).|| The results of these studies show a similarity in this species to *V. album* of Europe; tabulated from the observations of Wright and Luff, as follows. One kilogramme of the roots of each species yielded:

<table>
<thead>
<tr>
<th>Species</th>
<th>V. album</th>
<th>V. viride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jervia, C₂₈H₃₇NO₄</td>
<td>1.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Pseudojervia, C₂₀H₄₁NO₆</td>
<td>0.40</td>
<td>0.15</td>
</tr>
<tr>
<td>Rubijervia, C₁₉H₃₇NO₄</td>
<td>0.25</td>
<td>0.02</td>
</tr>
<tr>
<td>Veratralbia, C₁₉H₃₇NO₄</td>
<td>2.20</td>
<td>traces</td>
</tr>
<tr>
<td>Veratria, C₁₉H₃₇NO₄</td>
<td>0.05</td>
<td>0.004</td>
</tr>
<tr>
<td>Cevadina, C₁₉H₃₇NO₄</td>
<td>(?)</td>
<td>0.43</td>
</tr>
<tr>
<td>Total</td>
<td>4.20</td>
<td>0.804</td>
</tr>
</tbody>
</table>

Jervia, *C₂₈H₃₇NO₄*—This amorphous alkaloid (the *viridia* of G. B. Wood) forms an almost insoluble sulphate, crystallizing with two molecules of water, melting at 239° (462.2°, F.), and giving with sulphuric acid almost the same coloration as the next.

Pseudojervia, *C₂₀H₄₁NO₆*—A snow-white base, crystallizing anhydrous from alcohol, melting at 299° (570.2°, F.), and giving a yellow solution with sulphuric acid, gradually turning green.

Rubijervia, *C₁₉H₃₇NO₄*—A base forming a readily-soluble sulphate and well-crystallized salts in general. It melts at 237° (458.6°, F.), and resembles in many ways the preceding; it, however, gives with sulphuric acid a red coloration.

Veratralbia, *C₁₉H₃₇NO₄*—This base gives a red coloration with sulphuric acid, and greatly resembles cevadina and the veratria of other authors.

Cevadina, *C₁₉H₃₇NO₄*—An amorphous mass, greatly resembling the veratralbia of *V. album*, and termed the sternutatory property of *V. viride*.

The above digest of Wright and Luff’s analysis is anything but satisfactory, and is open to much criticism as regards its solution of the problem still before us. The following latest analysis of the Veratrine of *V. album*, by Dr. Emil Bossetti,¶ will serve to throw some light upon the complex nature of the principles of this genus. First: he claims that veratrine is a homogeneous mixture of two isomeric alkaloids; these he designates as insoluble

Veratrine, *C₂₀H₃₇NO₄*—A crystallizable alkaloid (the cevadina of Wright and Luff), insoluble in water, which decomposes on boiling with an alcoholic solution of barium hydrate,** into angelic acid, *C₇H₆O₂*, and

Cevadine, *C₂₇H₄₅NO₆*—An amorphous, yellowish-white powder, having an alkaline reaction and a peculiar sweetish taste.

The other isomer soluble veratrine, or

Veratridine, \(\text{C}_{32}\text{H}_{49}\text{NO}_4 \).—An uncrystallizable alkaloid (the soluble veratrine of Weigelin and E. Schmit), soluble in water, and decomposing when boiled with an alcoholic solution of baryta water* into veratric acid, and

Veratroine, \(\text{C}_{55}\text{H}_{92}\text{N}_2\text{O}_{16} \).—A body forming, after dehydration and trituration, a yellowish-white powder, the dust of which causes coughing and sneezing. It is sparingly soluble in water, but readily soluble in chloroform, ether, amyl alcohol, benzol, and carbon bisulphide; therefore answering fully to C. L. Mitchell’s \textit{veratroidia} as obtained from \textit{V. viride}, to which Tobien gave the formula \(\text{C}_{61}\text{H}_{78}\text{N}_2\text{O}_{16} \).

Veratric Acid, \(\text{C}_9\text{H}_{10}\text{O}_4 \).—crystallizes in colorless needles, losing their water on crystallization on heating, and sublimes completely at high temperatures. This body is soluble in water and alcohol, and insoluble in ether.

PHYSIOLOGICAL ACTION.—On \textit{Animals}.—Dr. Percy’s experiments upon dogs and frogs show finely the action of the drug. From his prize essay from the \textit{Am. Med. Assoc.}, 1863, I have selected two of the more prominent cases:

"**Experiment VII.**—Into the cellular tissue of the right lumbar region of a mongrel dog weighing sixteen pounds was passed, by Wade and Ford’s hypodermic syringe, ten minims of the concentrated tincture. The pulse at the time was 110. The movements soon became uneasy and unsteady. In eighteen minutes the dog vomited, and the pulse was reduced to 63. In thirty-four minutes the dog staggered, lay down, and was unable to rise, the retching continuing frequent. In thirty minutes the dog lay completely on its side, and the saliva flowed very freely from his mouth. The eye was dull, the pupils widely dilated, but fixed; but the eye closed if the cornea was touched. The limbs were very flaccid, the pulse 32. Ten minims more of the same tincture were now injected into the left lumbar region. In forty-five minutes from the first injection, the heart was beating 14 in the minute, and very irregular; the saliva continued to flow freely from the mouth, being almost as limpid as water. \textit{The dog was perfectly insensible to pain.} The respirations were slow but full. At one hour from the first injection, the heart merely fluttered; the dog could be moved in any way without the slightest voluntary motion. The urine and feces were passed involuntarily.

"**Experiment I.**—Ten minims of a solution containing \(\frac{1}{2} \) gr. of the alkaloid \textit{veratrina} made from \textit{veratum viride}, by Mr. George Scattergood, of Philadelphia, were given to a large dog weighing about thirty pounds, in gelatine capsules; great care was taken that none of it escaped into the mouth.

<table>
<thead>
<tr>
<th>Time</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:35 P.M.</td>
<td>salivation very profuse.</td>
</tr>
<tr>
<td>4</td>
<td>vomited.</td>
</tr>
<tr>
<td>4:05</td>
<td>vomiting very frequently.</td>
</tr>
<tr>
<td>4:45</td>
<td>vomiting viscid mucus and bile.</td>
</tr>
<tr>
<td>5:20</td>
<td>prostration very great, unable to stand.</td>
</tr>
<tr>
<td>5:45</td>
<td>pupils widely dilated, eyes fixed.</td>
</tr>
<tr>
<td>6</td>
<td>prostration great, profuse salivation.</td>
</tr>
<tr>
<td>9</td>
<td>walking about, but sober and dejected.</td>
</tr>
</tbody>
</table>

Pulse 150

<table>
<thead>
<tr>
<th>Time</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>148</td>
</tr>
<tr>
<td>4:05</td>
<td>140</td>
</tr>
<tr>
<td>4:45</td>
<td>128</td>
</tr>
<tr>
<td>5:20</td>
<td>122</td>
</tr>
<tr>
<td>5:45</td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>Intermittent</td>
</tr>
<tr>
<td>9</td>
<td>112</td>
</tr>
</tbody>
</table>

\[(\text{C}_{32}\text{H}_{49}\text{NO}_4)_2 + (\text{H}_2\text{O})_2 = \text{C}_9\text{H}_{10}\text{O}_4 + \text{C}_{55}\text{H}_{92}\text{N}_2\text{O}_{16} \]
"Three days afterward the same dose was again given to the same dog, with very similar results. With this animal, the pulse was not much depressed, the prostration was very great, and there was almost total loss of power of the voluntary muscles.

"During the months of July and August, 1857, I tried thirty-one experiments upon dogs with the alkaloid, made by myself from veratrum viride, and with the commercial veratria made by Merck, for the purpose of ascertaining if they were alike in their therapeutic action.

"From these experiments I learned that the alkaloid from the viride was more sedative in its effects upon the pulse than the commercial veratria; that it was less irritant, seldom causing an increase in the number of pulsations, which the commercial veratria frequently did; that it produced vomiting and prostration in about an equal degree; that when a large dose was given, and prostration induced, there was most generally a dilatation of the pupils, but this effect was not produced by small doses; that purging was but seldom produced by either when given by the mouth, but nearly always when given by hypodermic injection; that large doses of either, amounting to two grains at a time, might be given, producing alarming prostration, and most painful and protracted vomiting, without causing death, if brandy, brandy and morphia, or tincture of cantharides was administered; and that in every instance the animal's life might be saved by proper attention.

"In those instances where death took place from these alkaloids, it was caused by repeating the dose, and not by a dose of two grains administered at one time. Upon post-mortem examination, the mucous membrane of the stomach was much inflamed, and in some instances the inflammation extended more or less through the whole intestinal tract, and was always seen at the rectum; the kidneys were in a state of congestion, and the heart filled with dark blood.

"Both alkaloids produced a sedative effect upon the pulse, but the commercial veratria did not to the same extent as that from the viride, and neither of them to the same extent as the pure resinoid, or the tincture made from veratrum viride.

"The prostration was more complete, alarming, and prolonged, and the vomiting was more painful and continued from the effects of the alkaloid than from the other preparations named."

Dr. Percy's experiments upon frogs, meanwhile watching their circulation with the aid of a microscope, are very interesting. After the injection of the tincture, the course of the blood through the capillaries "may be watched until the circulation is so regular and sluggish that the blood-globules may be counted as they course through the smaller vessels, and the difference between the white and red disks, and their position in the larger capillaries, may be easily discerned. Sometimes the circulation would almost entirely cease in the web, but would return again in ten or fifteen minutes if the frog upon the plate was placed in fresh running water.

"It was always interesting to watch the cessation of the circulation and its recommencement.

"When large doses of the veratrum viride were given by the stomach, the cessation of the circulation never occurred suddenly. There would be intermis-
sions of longer or shorter duration; after each one, the current of blood when re-established would be slower than before, and after a while would cease. After it had ceased there would be an occasional throb, which would cause a general movement, but upon the subsidence of the impetus, the blood-disks would be in about the same situation as before.

"The occurrence of this throb was the first notice given of the return of the circulation; it would be repeated at shorter intervals, sometimes a minute elapsing, and then several of such pulsations would occur in a minute. Then a short but general movement would take place of the blood-disks, at each pulsation, ceasing upon cessation of the *vis a tergo*, and again renewed, until the circulation was entirely established in a slow but steady current."

On Man.—Veratrum viride causes slight or temporary delirium; vertigo, especially when in an erect position; dimness and unsteadiness of vision, which compels a horizontal position; dry mouth and lips; tongue coated at base and sides, with a red streak down the centre; dryness of the throat and numbness of the fauces; excessive and painful singultus, profuse salivation, with severe spasms of the superior portion of the oesophagus, and great nausea, vomiting and cold sweat; vomit composed of mucus, bile, and dark-colored blood; pain and soreness of the lower abdomen; urine clear and scant; convulsive, suffocating breathing; pulse slow, weak, small, and soft, reduced even to almost imperceptibility; very profound prostration, the patient is unable to rise or to walk; profuse cold sweat, with chills and coldness of the surface of the body.

The action, then, is that of an arterial and nerve sedative; it paralyzes both the voluntary and involuntary muscles; it increases all secretions through its influence in paralyzing the vaso-motor system of nerves, allowing thus a great dilation of the capillaries.

Description of Plate 176.

1. Whole plant, 6 times reduced, Binghamton, N. Y., July 7th, 1885.
2. A small raceme, from the lower portion of the panicle.
3. Under surface of flower, showing bract.
4. Sepal.
5. Stamens.
6. Pistil.
7. Longitudinal section of ovary.
8. Horizontal section of ovary.

(3–8 enlarged.)
CHAMÆLÆRİÜM LÛTEUM, Gray.
N. ORD.—LILIACEÆ.

Tribe.—MELANTHIEÆ.

Genus.—CHAMAELIRIUM,* WILLD.

Sex. Syst.—Hexandria Trigyna.

HELONIAS.†

DEVIL’S BIT.

Syn.—CHAMAELIRIUM LUTEUM, GRAY; C. CAROLINIANUM, WILLD.; HELONIAS DIOICA, PURSH.; H. PUMILA, JAÇQ.; H. LUTEA, AIT.; VERATRUM LUTEUM, LINN.; MELANTHIUM DIOICUM, WALT.; M. DENSUM, LAM.; OPHIOSTACHYS VIRGINICA, DEL.; ABALON ALBI-FLORUM, RAFF.

Com. Names.—DEVIL’S BIT, BLAZING STAR, UNICORN PLANT, DROOPING STARWORT, FALSE UNICORN ROOT, STARWORT, COLIC ROOT.‡

A TINCTURE OF THE ROOT OF CHAMAELIRIUM LUTEUM, GRAY.

Description.—This smooth perennial herb attains a growth of from 1 to 3 feet. Stem wand-like, leafy. Rootstock thick, abrupt, light colored, and furnished with many long roots from the base of the stem, and a number of fibrous rootlets from its thickest portion. Leaves alternate, parallel veined, those of the upper stem small, lanceolate, and sessile, increasing in size toward the root, where they tend toward spatulate and are tapered into a petiole. Inflorescence dioecious, both kinds in long, terminal, virgate, spike-like racemes, the fertile nearly erect, the sterile more or less curved; pedicels spreading in the male, erect in the female, all bractless. Perianth in both sexes composed of 6, spatulate, spreading, marcescent sepals. Stamens 6, unequal, longer than the sepals in the male flower, short and rudimentary in the female; filaments thread-shaped; anthers yellow, 2-celled, roundish oval, and extrorse. Ovary green, usually wanting in the sterile flowers; styles 3, linear-clavate, spreading, separate down to, and nearly as long as, the ovary; stigmas simply the inner surfaces of the styles. Fruit an ovoid-oblong, 3-celled pod, loculicidally 3-valved from the apex. Seeds numerous, linear-oblong, winged at each end.

History and Habitat.—The Devil’s Bit is indigenous to North America, where it ranges from Western New England westward to Illinois and southward; it habits rich woods, and flowers in June.

* χαμαι, chama, on the ground; λιλος, lirion, lily.
† Ἐλος, helos, marsh; as some species frequent bogs.
‡ For an analysis of the common names, see footnote and history, under Aletris, 172.
On account more of the similarity of vulgarisms than aught else, this plant and Aletris are gathered as the same in various localities, or are interchanged. The root of Helonias, however, is too characteristic, even when thoroughly dried, to be mistaken for that of any other plant known to me. When this root is cut across it will be plainly noticeable that the fibrous rootlets pierce the cortex through ample foramina, in which they are found to be freely movable, like a thread in the eye of a needle (Fig. 9); this character is constant and specific. It is said that there is an aboriginal legend to the effect that the bad spirit, angered that this root should cure all disorders—as was then supposed—bit off a portion of it to curtail its usefulness, whence the name Devil’s Bit.

The previous medical history of this plant dates from the aboriginal use against colic, worms, and fevers. In domestic and botanic practice it is considered tonic, diuretic, emetic, sialagogue, emmenagogue, vermifuge, and antiscorbutic. Rafinesque says that its mere application to the skin causes diuresis. Dr. B. S. Barton thought that its relief of colic was on account of some narcotic power. Dr. Ives used it as a tonic, and commends it for checking nausea and vomiting. Dr. Branman* had the utmost confidence in the root in the cure of leucorrhœa. The Indian squaws employed the root to check miscarriages, and chewed the root to relieve coughs. Helonias proves itself very useful in atony of the generative organs of both sexes, especially when associated with colic and severe lumbar pains.

PART USED AND PREPARATION.—The fresh root, gathered after the fruits have burst, is treated as directed under Trillium.† The resulting tincture has a beautiful, clear orange color by transmitted light; no distinguishing odor; a pleasant, but very bitter, taste; and an acid reaction.

CHEMICAL CONSTITUENTS.—Chamælirin. Dr. Green succeeded in isolating this glucoside from the root, and suggests the name. Like many principles of the lily tribe, this body is saponaceous in its alcoholic and aqueous solutions, and insoluble in other general solvents. He describes the body as an amorphous, neutral, bitter powder, splitting, through the agency of dilute acids, into glucose and an uninvestigated body that is insoluble.

The Tildens’ analysis‡ resulted in the determination of an oleo-resin, a bitter principle, extractive, gum, starch, and other bodies not essential.

PHYSIOLOGICAL ACTION.—The symptoms caused in several experimenters from the ingestion of varying doses of the tincture and of helonin, are in substance as follows: Mental depression; headache, fulness, and vertigo; dimness of vision; dryness of the mouth and fauces; irritation and burning of the stomach; colic; slight purging followed by scyballa; burning in the region of the kidneys “like two bags of hot water;” profuse urination followed by uncertainty of the sphencter vesicae; uterine hemorrhage, and burning of the pudenda; lowering of the

frequency of the pulse; severe lumbar pain; languor, chilliness, and flashes of heat.*

DESCRIPTION OF PLATE 177.

1 and 2. Whole male plant, Port Crane, N. Y., June 29th, 1885.
3. A male flower.
4. Sepal.
5. Stamen.
6. Anther.
7. Female flower.
8. A style.
9. Horizontal section of the rootstalk.
10. Fruit.
11. Horizontal section of the fruit.
(3–8 and 10–11 enlarged.)

* Allen, Ency. Mat. Med., iv, 565–72; mostly from Dr. Samuel A. Jones' experiments.
LILIUM SUPÉRBUM, Linn.
N. ORD.—LILIACEÆ.

Tribe.—LILIÆ.

GENUS.—LILIUM, * LINN.

SEX. SYST.—HEXANDRIA MONOGYNIA.

LILIUM SUPERBUM.

TURK’S-CAP LILY.

SYN.—LILIUM SUPERBUM, LINN.; L. CAROLINIANUM, MICHX. (?)

COM. NAMES.—TURK’S-CAP LILY, SUPERB LILY, MEADOW LILY, WILD TIGER LILY.

A TINCTURE OF THE FRESH BULB OF LILIUM SUPERBUM, LINN.

Description.—This beautiful perennial herb attains a growth of from 3 to 7 feet. Bulb scaly; stems simple, erect, glabrous, rounded. Leaves sessile, the lower in whorls of from 5 to 7, the upper scattered, all 3-nerved, lanceolate, pointed, and smooth. Inflorescence a terminal pyramidal raceme; flowers 3 to 40, nodding; perianth open campanulate, its divisions somewhat coherent at their bases. Sepals 6, sessile, strongly revolute, deciduous, bright orange with numerous dark purple spots inside, and a honey-bearing furrow at the base. Stamens 6, shorter than the style, hypogynous; filaments dilated and somewhat adherent at their bases, from which they taper to a very fine apex at the point of fixture of the anther; anthers linear, versatile, at first included then projecting, opening by a lateral or slightly introrse line. Ovary 3-celled; ovules anatropous. Style elongated club-shaped; stigma apical, 3-lobed, the receptive surface velvety. Fruit an oblong, subtriangular, 3-celled, loculicidal capsule, each cell containing two rows of seeds. Seeds numerous, horizontally flattened by compression; testa soft; embryo small, axial; albumen fleshy.

History and Habitat.—This beautiful lily is indigenous to North America from the Carolinas northward to Canada and westward to the Rocky Mountains, where it habits rich low grounds, and flowers from June through July.

This species has no medical history, its congener, *L. tigrinum*, of China, covering all that is known concerning this.

PART USED AND PREPARATION.—The fresh bulbs are treated in the same manner as those of Trillium (p. 175-5). The resulting tincture has a beautiful orange color by transmitted light; no distinguishing odor; a bitter and astringent taste, and an acid reaction.

* The classical Latin name, from the Celtic *li*, or the Greek *leirion*, white.
In preparing the tincture in further provings, the flowers, when in full sexual power, should be included, thus extending its therapeutic usefulness.

PHYSIOLOGICAL ACTION.—The only account of the action of this drug is that of Dr. E. Reading,* who records the following effects: Mental exhaustion; headache; dullness of the eye; epistaxis; paleness and sickly expression of countenance; bitter taste in the mouth; burning of the mouth and oesophagus; increased appetite; splenic discomfort; constipation; oppression of chest; acceleration of the pulses; weakness of the extremities; languor; debility, prostration, and restlessness.

Description of Plate 178.

1. Upper portion of flowering plant, Elmira, N. Y., Aug. 11th, 1885.
2. Section of mid-stem.
4. Stigma.
5. Young fruit.
6. Section of ovary.

(3, 4, and 6 enlarged.)

SERIES

CRYPTOGAMIA.

Plants without flowers; i.e. destitute of the essential organs stamens and pistils, and producing in lieu of seeds, numerous microscopic bodies capable of germination, called spores.

CLASS

ACROGENS.

Cryptogams with distinct stems and branches, exhibiting woody tissue and vessels, and generally with some sort of foliage.
Equisetum Hyemale, Linn.
N. ORD.—EQUISETACEÆ.

GENUS.—EQUISETUM,* LINN.

SEX. SYST.—CRYPTOGAMIA FILICES.

EQUISETUM.

GREAT SCOURING RUSH.

SYN.—EQUISETUM HYEMALE, LINN.

COM. NAMES.—SCOURING RUSH, DUTCH RUSH, SCRUBBING RUSH, SHAVE-GRASS, WINTER HORSE TAIL; (FR.) PRÉLE; (GER.) SCHACHTELHALM.

A TINCTURE OF THE WHOLE FRESH PLANT EQUISETUM HYEMALE, LINN.

Description.—This erect, arrow-like plant grows to a height of from 1 to 3 or 4 feet. Root perennial, horizontal, jointed like the stem, putting off from the sections, at their middle, numerous moss-like rootlets. Stem simple, rarely inconspicuously branched, sub-cylindrical from root to spike, hollow, evergreen, surviving the winter; ridges 17 to 27, very rough; tubercles in two more or less distinct lines on the ridges, constituting the roughness of the stem. Sheaths elongated, closely appressed to the stem at each joint, and furnished with a black zone at their bases; limb black, composed of as many teeth as there are ridges upon the stems; teeth linnear, narrow, each with a keel at its base, appearing as a prolongation of the ridge below; the awned points deciduous. Epidermis abounding in silex; stomata disposed in two lines, one on each side of the groove. Spike apical, ovate, armed with a sharp, rigid, black tip; scales with a dark, brownish-black face.

Equisetaceæ and Equisetum.—This family of flowerless plants is very characteristically distinct, consisting of one genus only, the Equiseta, immediately recognized after once examined. They consist of fertile and sterile stems, often branched, and always jointed, hollow, and rough. The root, in its solid portion, is composed from centre to circumference of the following layers: strong cellular tissue; a circle of air-canals, each surrounded by a zone of vascular bundles; a circle of vascular bundles composed of annular ducts; a parenchyma traversed by air-canals; a circlelet of parenchymatous cells; and the cuticle. As the rhizome approaches the stems it becomes hollow through the loss of the central cellular tissue and the modification of the other layers. The jointed stems and branches are hollow and bridged by a thin membranous diaphragm at each joint.

* Equus, a horse; seta, a hair or bristle.
fructing head is somewhat cone-shaped, composed of a central axis as a prolongation of the last joint of the stem, upon which are situated, like growing toad-stools, numerous groups of theca or sporanges, joined by their bases to a central axis, and looking inward, so that only the somewhat hexagonal flattened cap is seen externally. These sporanges, as they ripen, separate from one another, and finally burst longitudinally, allowing the escape of the spores. The spores are very strange bodies, unlike any other form of vegetable matter. They are ovoid in shape, and composed of two coats, the outer splitting spirally, thus forming four thread-like bodies, thicker at their free ends, called elaters, which, from what follows, will be seen to be very useful in scattering the seed. While the spores are crowded in the sporangia, or when they are damp, these elaters are tightly coiled around the spore; but, as soon as the theca bursts, or the spores become dry, the elaters uncoil with force, causing the propulsion of the spore to quite an extent. This may be seen by placing a few spores under the microscope and breathing upon them; the exhaled moisture causes the elaters to coil up immediately; by quickly placing the eye at the tube a curious sight is witnessed as drying commences. If the drying is slow, the spores roll and twist about like spiders in pain; while, if the drying is quick, they will skip from the field of view like grasshoppers. The germination of the spore is quite similar to the process of multiplication in the rod-bacteria. A bud-like process puts out from the spore and soon becomes cut by a septum; this grows on and multiplies in all directions until a tuft is formed, from the centre of which arises archegonia and antheridia, in distinct bodies. After fertilization of an archegonium, the germ-cell develops like an embryo. At the present day the Equiseta are all comprised in one genus, but paleontology shows many species of great size and more varied features.

History and Habitat.—The Scouring Rush grows on wet banks, in open woods, especially northward, fructing in early spring. From the abundance of silex in the cuticle, the stems have been variously used for scouring purposes; this use has contributed largely to its vocabulary of vulgarisms. It is gathered into bundles by many housewives and used to brighten tins, floors, and woodenware, and in the arts for polishing woods and metals. Rafinesque says: “This plant, and allied species, furnish good food for cattle in winter.” He speaks of a tall species, called Nebratalh by the Missouri Indians, used in the manufacture of mats, and of a species which he names E. tuberosum, the roots of which are used as food by the Indians.

This plant is not mentioned in the U. S. Ph., and not official in the Eclectic Materia Medica.

PART USED AND PREPARATION.—The whole fresh plant is chopped and pounded to a pulp and weighed. Then two parts by weight of alcohol are taken, the pulp mixed well with one-sixth part of it, and the rest of the alcohol added. After thorough mixture the whole is poured into a well-stoppered bottle and allowed to stand eight days in a dark, cool place. The tincture thus formed, after straining and filtering, should have a light greenish-brown color by transmitted light, a woody taste, followed by a slight tobacco-like burning of the tongue, and an acid reaction to litmus-paper.
CHEMICAL CONSTITUENTS, Silicia, SiO₂.—This oxide of silicium is present in the plant in large quantities, ranging, according to different authorities, from 7.5 to 41.2 per cent. of the whole herb.

Equisetic Acid, Aconitic Acid, C₆H₆O₆.—This acid was determined in *E. fluviatile* as magnesium aconitate by Braconnot, who considers it present in the other species of the genus. It forms in highly acid klinorhombic prisms, fusing at about 130° (266° F.), and soluble in both water and alcohol. This acid has also been called “mallic,” because it is formed upon the destructive distillation of mallic acid; but it fails to answer to the properties of that acid, as well as to its composition, C₄H₄O₄.

PHYSIOLOGICAL ACTION.—Dr. Hugh M. Smith states* the following symptoms arising in persons taking from 50 to 150 drops of the tincture: Greatly increased appetite; severe sharp pain, with soreness, in the lower abdomen; pain, tenderness, and distention of the bladder, with frequent urging to urinate; sharp pain along the urethra, burning and aching in the penis and testicles when urinating, with soreness of the testicles and spermatic cord; dull pain and soreness in the back, with prostration.

It is said that where cattle have been given too large quantities of an infusion as a diuretic, it has caused the voidance of blood.

Description of Plate 179.

1. Lower portion of stem.
2. Upper portion of stem.
 (Two feet of stem between Nos. 1 and 2 left out.)
3. Fruiting head (enlarged.)
4. Sporangia, outer; 5. inner view.
6. Damp spore x 200.
7. Dry spore x 200.
8. Stoma x 200.

From Binghamton, N. Y., May 1, 1884.

LYCOPODIUM CLAVATUM, Linn.
LYCOPODIUM.

CLUB MOSS.

SYN.—LYCOPODIUM CLAVATUM, LINN.; L. TRISTACHYUM, PERS.; L. INTEGRIFOLIUM, HOOK.

COM. NAMES.—COMMON CLUB MOSS, GROUND PINE, HOG'S BED, SNAKE MOSS, STAG'S HORN, WOLF'S CLAW; (FR.) PIED DE LOUP; (GER.) KALBEN-MOOS, GEMEINES BÜRLAPP. THE SPORES: VEGETABLE SULPHUR; (FR.) Lycopode, Soufre végétal; (GER.) Bürllapp-Samen, Blitz Pulver, Wurm Mehl, Hexen Mehl.

A TRITURATION OF THE SPORES OF LYCOPODIUM CLAVATUM, LINN.

Description.—This evergreen perennial extends to a length of 30 feet or more. Stem tough, flexible, terete, and very leafy, creeping extensively and striking root at varied intervals; roots light yellow, wiry, solitary and straight; branches ascending, similar to the stems, but short and subdivided, the fertile terminated by a fruiting peduncle. Leaves crowded, homogeneous, equal and many-ranked, all linear-awl-shaped, incurved, spreading, light green, and tipped by a long, incurved capillaceous bristle. Peduncle of the female branches erect, strict, 4 to 6 inches long, and bearing from 1 to 4, but usually 2, spikes; bracts sparse, somewhat appressed, tipped with a fine bristle; spikes linear, cylindrical, blunt, erect, mostly in pairs, each composed of an axis and many closely appressed scales; scales ovate-triangular, closely imbricated, membranaceous, erosely denticulate, pedicelled and tipped by a filiform point. Spore-cases (theca) all of one kind, situated in the axils of the scales, all more or less flattened-reniform, coriaceous, 1-celled, and opening by a trans-marginal line down through even the pedicel, leaving each valve an individual stalk. Spores copious, very minute, together forming a very mobile, sulphur-yellow powder, which is described further on.

LYCOPODIACEÆ.—This family of low, moss-like plants, is represented in North America by 2 genera and 13 species; its general characteristics are: stems herbaceous or ligneous, simple or branched, and usually prostrate and extensively creeping. Leaves usually crowded, linear, simple, sessile, persistent, 1-nerved, and more or less appressed. Fructification axillary or spiked; spore cases quite large, 2-valved; spores generally copious and minute.

* Λύκος, lykos, a wolf; πόδος, podos, a foot; from a fancied resemblance.
This peculiar order furnishes but few drugs, but, contrary to their general appearance, they have high medicinal qualities. The West Indian *Lycopodium cernuum*, Linn., is diuretic, and recommended as a specific for certain forms of dysentery; the Peruvian *L. catharticum*, Hook., is a violent purgative, valued by the natives in leprosy and elephantiasis; the East Indian *L. phlegmaria*, and *L. hygrometricum*, L., are considered aphrodisiac, especially the latter, which is noted for its qualities in this direction; and the European and American *L. Selago*, Linn., an active, narcotic poison; emetic and cathartic in small doses, but dangerous in large, bringing on violent purgation and convulsions; it is also strongly counter-irritant when applied to the skin, being used to keep blisters open, and to kill lice upon animals.

History and Habitat.—The common Club Moss is indigenous to North America, Northern Europe and Asia, as well as like countries of the Southern Hemisphere. It occurs in this country in dry woods, where it is common northward, fruiting in July and August.

Under the names *Muscus terestris*, or *Muscus clavatus*, this plant was used as a whole, by ancient physicians, as a stomachic and diuretic, though the powder does not appear to be used alone, until about the 17th century. *L. Selago* was employed, by the Druids, as an active cathartic and deobstruent.

The spores have been used as a diuretic in dropsy; a drastic in diarrhoea, dysentery, and suppressions; a nerve in spasms and hydrophobia; an aperient in gout and scurvy; and a corroborant in rheumatism. Externally they are largely used as a dusting powder for various skin diseases, and in excoriations of infants, to prevent chafing; and are considered the most efficacious application to *plica polonica*. In pharmacy, they form the best powder for keeping pills and lozenges from cohering with each other. They are very inflammable, so much so as to flash with a hissing noise when ignited. This property has determined their use in pyrotechnics, and for imitating the lightning’s flash in theatrical performances.

The spores are officinal in the U. S. Ph.; in the Eclectic Dispensatory the plant is not mentioned.

PART USED AND PREPARATION.—The spores, *en masse*, form a very fine, odorless, tasteless, mobile, light-yellow powder, adhering to the fingers, but exhibiting a repulsive force for water. If shaken with water a portion sinks, with alcohol it is readily miscible; it is tinged brown by iodine; and sulphuric acid, when hot, instantly penetrates the spores, rendering them transparent, but not rupturing their coat. Individually, under a strong lens, the spores are seen to be bluntly tetrahedral, one surface (the base) being convex, the others trianually pyramidal, their apices not fully meeting, but leaving a three-armed space. They show a surface finely reticulated by minute ridges, that are more elevated at their junctions, and enclose pent- or hexagonal spaces, the floors of which are occupied by a transparent, but astonishingly tough membrane, which, when ruptured, allows the escape of globules of an oily nature.
Sophistication.—The pollen of some plants, such as the cat-tail (Typha latifolia); pine (various species of Pinus); spruce (Abies), and hemlock (Abies Canadensis), are often mixed fraudulently with the powder, the microscope alone being able to detect the imposition.* Starch, when incorporated with the powder, may be detected by iodine; and talc, gypsum, and chalk may be discovered by throwing the powder into water, or bisulphide of carbon; boxwood powder may be separated by the use of a fine sieve that will allow the spores to pass and retain the wood. However, the Lycopodium of commerce, which is mostly gathered in Russia, Germany, and Switzerland, is usually quite pure.

To obtain an efficacious tincture of Lycopodium, a previous severe trituration for hours, first dry and then with the addition of sufficient alcohol to form a paste, is necessary; then five parts, by weight, of alcohol is added, the whole poured into a well-stoppered bottle, and allowed to stand for eight days in a dark, cool place, being thoroughly shaken twice a day. The tincture, separated by straining and filtering, has a clear straw-color by transmitted light; an oily odor and taste; and a neutral reaction.

CHEMICAL CONSTITUENTS.—Analyses made by Buchholtz and Cadet determined the presence of fat oil 6.0, sugar 3.0, gum 1.5, pollenin 89.5, this last being a mixed body. Stenhouse determined the presence of volatile bases, which were corroborated by Flückiger, who also determined that the ash was not alkaline, and contained alumina and phosphoric acid.

Oil of Lycopodium.—This bland liquid, of which Buchholtz found only 6 per cent., was determined by Flückiger to exist in large amount (47.0 per cent.) when the spores are ruptured. It does not solidify, even at — 15° (± 5° F.).

[Lycopodine, C$_{32}$H$_{52}$N$_2$O$_3$.—This alkaloid, isolated by K. Boedecker† from an aqueous solution of the alcoholic extract of L. complanatum, Linn., may prove to exist also in this species. He describes it as a bitter, crystalline body, melting at 114° (237.2° F.), and freely soluble in many liquids, including alcohol and water.]

PHYSIOLOGICAL ACTION.—The experiments with this drug by Dr. Arnold, of Heidelberg, with the tincture, and by Prof. Martin, of Jena, and six of his pupils, gave the following: The general symptoms were those of excitement, quickened circulation, headache, increased appetite, more frequent evacuations, and stronger sexual desire. The chief local affinity manifested was for the urinary organs. There was frequent and sometimes painful micturition; and the urine was cloudy and sedimentous, occasionally charged with mucus and even blood. This mostly covers the so-called physiological action, though, when long-continued doses of the more highly potentized drug are taken, the scope of this remedy is immeasurably enlarged.§

* See Fig. 11, Plate 163, and Fig. 9, Plate 164.
† Ann. de Chim., 208, 363.
DESCRIPTION OF PLATE 180.

1. A portion of a stem after fruition, from Wenham, Mass., Nov. 23d, 1886.
2. A section of a stem.
3. Leaf.
4. A bract, outer view.
5. A bract, inner view, showing theca.
6 and 7. Two views of a spore × 250.

(2–5 enlarged.)
APPENDIX.
A, when beginning a Greek derivative, signifies a want of something, or a negative (acaulistic—without a stem).

Abnormal, contrary to the usual order of things.

Aboriginal, truly original.

Aborigine, in this work means the American Indian.

Abortion, an imperfect formation, or the non-formation, of some part.

Abortive, imperfect or rudimentary (the stamen, plate 113, fig. 5).

Abrupt, suddenly terminating; as

Abruptly pinnate, without an odd leaflet at the end. (Plate 35, fig. 10.)

Aculescent, apparently stemless. (Plate 19, fig. 1.)

Accumbent, lying against a thing.

Acetabuliform, saucer-shaped.

Achenium, pl. achenia, a one-seeded, seed-like fruit. (Plate 95, fig. 6.)

Achlamydeous, without floral envelopes.

Acicular, needle-shaped.

Acinaciform, scimitar-shaped.

Acrogenous, growing from the apex. (Plate 179, fig. 2.)

Acrogens, or acrogenous plants, the higher cryptogamous plants.

Aculeate, armed with prickles. (Plate 33, fig. 1.)

Aculeolate, slightly prickly (the stem of fig. 1, plate 155).

Acuminate, taper-pointed (the leaves of fig. 6, plate 152).

Acute, merely sharp pointed (the leaves of fig. 8, plate 156).

Adelphous, said of stamens when joined in a fraternity.

Adherent, sticking to, or growing fast to, another body (calyx to ovary, fig. 3, plate 70).

Adnate, said of an anther when fixed by its whole length to the filament. (Plate 80, fig. 8.)

Adventitious, out of the usual place.

Adventive, said of foreign plants when sparingly introduced—not really naturalized.

Equilateral, equal sided.

Estivation, the arrangement of the parts in the flower bud.

Achenium, or achen. See achenium.

Ala, pl. alae, a wing; the side petals of a papilionaceous corolla. (Plate 46, fig. 3, b.)

Alate, winged; as the seeds of the ash. (Plate 137, fig. 4.)

Albumen, a vegetable product stored with the embryo in the seed. (Plate 142, fig. 4.)

Albuminous, furnished with albumen.

Alexipharmic, that which obviates the effects of a poison.

Alexiteric, something that thwarts the action of venom.

Alternate, said of leaves when arranged one after the other. (Plate 81, fig. 1.)

Ament, a catkin. (Plate 156, fig. 1.)

Amorphous, without definite form.

Amphitropous, an ovule attached by the middle of one side, i.e. the raphe truly lateral. (Plate 9, fig. 4.)

Amplexant, embracing.
Amplexicaul, clasping the stem by the base (as the leaves of fig. 2, plate 68).

Amylaceous, starchy.

Anastomosing, forming a net-work, like the veins in a leaf.

Anatropous, an ovule bent back upon its stem. (Plate 22, fig. 6.)

Ancestral, two-edged (as the petioles, fig. 5, plate 162).

Androecium, the stamens collectively.

Androgyrous, having both male and female flowers in the same cluster.

Angiospermous, plants with their seeds formed in an ovary.

Annual, said of a plant that flowers and fruits the year it is raised from the seed, then dies.

Annular, in the form of a ring.

Annulate, marked by rings. (Plate 139, fig. 3.)

Anther, the essential part of a stamen, which contains the pollen. (Plate 152, fig. 4.)

Antheriferous, having an anther. (Plate 113, fig. 4, in contradistinction to stamen 5.)

Anthesis, the act of expansion of a flower.

Anthrocarpous, multiple fruits, like the blackberry.

Apetalous, destitute of petals. (Plate 33, figs. 3 and 4.)

Apex, the terminal point of a body.

Aphyllous, destitute of leaves. (Plate 179, figs. 1 and 2.)

Apical, belonging to the apex.

Apiciprate, tipped with an abrupt point. (Plate 5, fig. 5.)

Appendage, any superadded part (as seen on the sepals, plate 25, fig. 5).

Appendiculate, provided with appendages.

Appressed, brought into contact, but not united. (Plate 9, fig. 3.)

Aquatic, growing in water.

Arachnoid, cobwebby.

Arborescent, tree-like, both in size and form.

Areola, the scar of attachment (seen on the root, plate 11, fig. 2).

Arillate, furnished with an aril, or arillus, a fleshy, false coat to a seed. (Plate 13, fig. 6.)

Aristate, see Asteroid.

Arrow-shaped, same as Sagittate, which see.

Articulated, furnished with joints.

Ascending, rising obliquely upwards.

Aspergilliform, shaped like the brush used to sprinkle holy water. (Plate 82, fig. 6.)

Assurgent, see Ascending.

Atropous, see Orthotropous.

Auriculate, ear-shaped (as the bases of the leaves, plate 138).

Aeol-shaped, sharp pointed from a broader base. (Plate 1, fig. 5.)

Aven, a bristle-like appendage (as seen on anther, plate 100, fig. 7).

Axil, the angle on the upper side between a leaf and the stem.

Axile, belonging to the axis, or occupying the axis (the placenta in fig. 3, plate 70).

Axillary, occurring in an axil (the flowers of plate 130).

Axis, the central line of any body; the organ around which others are attached (as that portion of the stem occupied by the flowers, plate 172).

Baccate, berry-like (fruit of plate 124).

Barbate, bearded in lines, spots, or tufts (fig. 4, plate 122); not when the whole surface is hairy—then the part is truly bearded.

Barbellate, beset with short, stiff hairs, as is often the case with the pappus bristles in Com-
GLOSSARY.

Bark, the outside covering of a woody stem.
Basal, attached or belonging to the Base, that end of a body that is attached to its support.
Beaked, surmounted by a long and narrow tip. (Plate 4, fig. 5.)
Bearded, covered with a growth of fine hairs. (Plate 1, fig. 8.)
Bell-shaped, see Campanulate.
Berry, a fruit that is juicy or pulpy throughout, as a grape.
Bi, or Bis, twice; as Biauriculate, two-eared (the leaves of plate 138).
Biçipital, two-headed.
Biconjugate, twice paired (stigmas, fig. 5, plate 130).
Bidentate, two-toothed (as the ligule, fig. 5, plate 80).
Biennial, of two years’ existence, i.e. growing from the seed one season and from the root the next, then bearing fruit and dying entirely.
Bifid, cleft to about the middle, into two parts. (Plate 150, fig. 4.)
Bifoliate, a leaf composed of two leaflets.
Bifurcate, forked into two branches. (Plate 132, fig. 1.)
Bijugate, see Biconjugate.
Bijid, cleft to about the middle, into two parts. (Plate 150, fig. 4.)
Bilocular, two-celled (as the anther, fig. 3, plate 125).
Bipinnate, twice pinnate.
Bipinnatifid, pinnatifid with the lobes again pinnatifid.
Biserrate, doubly serrate (the leaf margins, fig. 2, plate 69).
Biterinate, the principal divisions three, each bearing three leaflets. (Plate 4, fig. 2.)
Bladdery, inflated and thin, like the pod of Lobelia inflata. (Plate 99, fig. 3.)
Blade of a leaf; the expanded portion.
Boat-shaped, see Scaphoid.
Bract, a small leaf or scale of the axil from which some other part of the plant grows.
(Plate 146, fig. 1.)
Bractlet, a bract seated upon the pedicel of a flower. (Plate 172, fig. 2.)
Branch, a woody division of a stem or root.
Bristles, stiff, sharp hairs (on the leaves of plate 62).
Bud, a branch in its undeveloped state.
Bulbous, bulb-shaped.

Caducous, dropping off very early, like the sepals of Podophyllum, which fall as the flower expands.
Caespitose, growing in tufts like turf.
Calcicolate, slipper-shaped.
Callose, hardened, or having callosities (hardened spots).
Calyculate, having an accessory calyx outside of the true. (Plate 31, fig. 3.)
Calyx, the outer (usually green) set of floral leaves. (Plate 128, fig. 2.)
Campanulate, bell-shaped (said of a flower when like fig. 4, plate 102).
Campylotropous, said of an ovule or seed when bent upon itself, like that of fig. 8, plate 14.
Canaliculate, channeled with a longitudinal groove.
Cancellate, latticed. (Plate 99, fig. 4.)
Capillaceous, capillary, hair-like in shape.
Capitate, having a globular apex, like a pin's head (fig. 4, plate 1), or forming a head (as the inflorescence of plates 62 and 76).

Capitulate, diminutive of capitate (the apices of fig. 7, plate 122).

Capriolate, bearing tendrils. (Plate 40, fig. 2.)

Capsule, any dry, dehiscent pod. (Plate 104, fig. 4.)

Capsular, relating to a capsule.

Carina, a keel; the two anterior petals of a papilionaceous flower. (Plate 56, fig. 3 c.)

Carinate, keeled; furnished with a ridge on one side. (Plate 61, fig. 6.)

Carneous, flesh-colored.

Carnose, for this work see Sarcous.

Carpel, a simple pistil. (Plate 57, fig. 5.)

Carpellary, having the appearance of a carpel, or pertaining to such.

Carpophore, the stalk of a fruit within the flower. (Plate 149, fig. 6.)

Carruginous, firm and tough; cartilage-like.

Caruncle, a warty excrescence upon a seed. (Plate 15, fig. 12.)

Carunculate, having a caruncle.

Catkin, a scaly, deciduous spike of flowers. (Plate 162.)

Caudate, having a tail. (Plate 1, fig. 8.)

Caulescent, obviously stemmed. (Plate 81, fig. 1.)

Cauline, belonging, or pertaining, to the stem (In plate 171, fig. 1, the upper leaf is cauline; the lower, radical.)

Cell, a cavity more enclosed than a pit.

Centrifugal, said of anything that is produced, or extends, from the center outward.

Centripetal, the opposite of Centrifugal.

Cernuous, nodding at the summit (the flower of plate 19).

Chaff, small, membranous scales found upon the receptacle of some Compositae.

Chaffy, having chaff, or a chaff-like texture.

Channeled, hollowed out like a gutter, like the petioles of the plantain. (Plate 107.)

Characteristic, a trait, or form, belonging to individuals.

Chartaceous, papery, or parchment-like in character.

Chlorophyl, the green coloring matter of plants.

Ciliature, the scar left by the fall of some portion of a growth.

Ciliate, having a fringe like eye-lashes (cilia) upon the margin. (Plate 122, fig. 2.)

Cinerous, having an ashy hue.

Circinate, rolled inwards from the top. (Plate 51, fig. 5.)

Circumsissile, dividing by an equatorial line. (Plate 108, fig. 3.)

Clathrate, see Cancellate.

Clavate, club-shaped; narrower below than above. (Plate 167, fig. 3.)

Claw, the narrow, stalk-like base of some petals. (Plate 51, fig. 4.)

Climbing, rising by the help of some other object.

Club-shaped, see Clavate.

Clustered, aggregated in a bunch (as the leaves of plate 15).

Coalescent, growing together (as the filaments, fig. 2, plate 50).

Coehleariform, spoon-shaped.

Coherent, growing together from first to last, i. e., their whole length (the styles, fig. 5, plate 60).

Columnella, the axis to which the carpels of a compound fruit are attached. (Plate 32, fig. 5.)

Column, the united stamens and pistils of an orchid. (Plate 170, fig. 4.)

Columnar, column-like (the style of fig. 4, plate 102).
Coma, a tuft.
Comose, bearing a tuft of hairs. (Plate 134, fig. 4.)
Commissure, a line of junction (as seen in fig. 7, plate 168; fig. 11, plate 150; fig. 8, plate 152, etc.).
Compound leaf, fig. 2, plate 69; compound pistil, fig. 5, plate 30; compound umbel, fig. 1, plate 63.
Compressed, flattened upon opposite sides (the seeds, fig. 12, plate 11).
Conduplicate, folded upon itself on its longest diameter, like a double sheet of note paper.
Cone, a dry, compound fruit, like that of the pine. (Plate 164, fig. 2.)
Confluent, blended together. See Coherent.
Conjugate, coupled in single pairs. (Plate 149, fig. 4.)
Connate, see Coherent.
Connective, that portion of the anther that connects its cells. (Plate 1, fig. 6.)
Connivent, brought close together (the styles, fig. 2, plate 18).
Contracted, either narrowed or shortened (corolla, fig. 4, plate 138).
Convolute, rolled up lengthwise, one edge over the other.
Cordate, heart-shaped at the base. (Plate 109, fig. 2.)
Coriaceous, leathery.
Corm, a solid bulb. (Plate 168, fig. 3.)
Cornaceous, horny.
Corniculate, bearing a small horn-shaped appendage (the lateral lobe of fig. 4, plate 121).
Corolla, usually the inner flower leaves, generally showy in form or color. (Plate 128, fig. 2.)
Corona, a crown-like appendage, or group of the same. (Plate 134, fig. 3.)
Coronate, crowned (the achenium of fig. 4, plate 93).
Corymb, a flat, or convex, flower-cluster where the peduncles or pedicels do not all issue from the same point upon the stem.
Corymbose, like a corymb in form. (Plate 30, fig. 2.)
Cotyledons, the leaves of the embryo—as the oily meats of the butternut, which consist of the cotyledons only, joined by their connective.
Crateriform, shaped like a goblet.
Creeping, growing horizontally upon, or beneath, the ground. (Plate 104, fig. 1.)
Cremocarp, the double achenium of the Umbelliferae. (Plate 68, fig. 7.)
Crenate, scalloped upon the edge with rounded teeth. (Plate 158, fig. 2.)
Crested, bearing an elevated appendage like a crest. (Plate 45, fig. 4.)
Crinites, furnished with long hairs (calyx and leaf bases of plate 31).
Crown, see Corona.
Cruciate, or Cruciform, shaped like a cross. (Plate 58, fig. 3.)
Crustaceous, hard and brittle.
Cryptogamous, said of plants that bear no flower—as mosses, ferns, and lichens.
Cucullate, hood-shaped (fig. 6, plate 45, the stigma).
Cuneate, Cuneiform, wedge-shaped (the leaflets of plate 48).
Cup-shaped, Cupuliform, wine-glass-shaped (the corolla, fig. 3, plate 79).
Cuspidate, tipped with a sharp, stiff point (the apex of fig. 2, plate 179).
Cut, see Incised.
Cyathiform, shaped like a wine-glass.
Cylindraceous, approaching to a Cylindrical form, as stems that are round and gradually tapering. (Plate 179, fig. 2.)
Cyme, a centrifugal inflorescence. (Plate 75, fig. 1.)
Cymose, having a cyme-like character.
Deca, ten; when preceding Greek derivatives.
Decagynous, ten-pistiled, or ten-styled.
Deciduous, falling later than caducous, i.e., before the formation of fruit.
Declined, turned downwards, or to one side (as the stamens, fig. 3, plate 43).
Decomposed, more than once compounded or divided (the leaves of fig. 1, plate 64).
Decumbent, reclined upon the ground, the summit tending to rise (the root-stock of plate 104).
Decurrent, said of leaves that are prolonged down the stem beyond their point of insertion upon it. (Plate 163, fig. 2.)
Decussate, a successive arrangement of pairs which cross each other (the leaves of plate 79).
Definite, of a uniform number.
Deflexed, bent downward at an angle (as some of the leaves in plate 140).
Deflorate, beyond the flowering state—as an anther after the pollen is discharged.
Dehiscent, a regular mode of splitting.
Deliquescent, branching so that the stem is lost in the branches. (Plate 132, fig. 1.)
Deltoid, shaped like the Greek letter Δ.
Dentate, toothed (the leaf margins of plate 153).
Denticulate, the diminutive of Dentate (the leaf margins of plate 55).
Depauperate, starved or impoverished.
Depressed, flattened from above downward (as the seeds in fig. 12, plate 11).
Descending, bent gradually downward (as the fruiting axis of plate 69).
Dextrorse, turned to the right.
Di- two; in Greek compounds, as
Diadelphous, said of stamens when united in two sets by their filaments. (Plate 50, fig. 2.)
Diandrous, having but two stamens. (Plate 119, fig. 3.)
Dichogamous, said of the styles when protruding from the bud.
Dichotomous, two-forked.
Dicotyledonous, having a pair of cotyledons—as in the butternut.
Didynamous, having two pairs of stamens—the one shorter than the other. (Plate 109, fig. 4.)
Diffuse, widely and irregularly spreading.
Digitate, said of a compound leaf when the leaflets are given off from the apex of the petiole. (Plate 44, fig. 1.)
Digynous, having two pistils or styles. (Plate 68, fig. 6.)
Dimorphous, of two forms.
Dioecious, when the stamens are in separate flowers on different plants (as in plate 154).
Dipetalous, two-petaled; diphyllous, two-leaved; dipterous, two-winged.
Disciform, or Disk-shaped, flat and circular. (Plate 164, fig. 9.)
Disk, the face of any flat, circular body; the central part of a head of flowers—as in the sunflower.
Disk-florct, the flower of a disk in Composite.
Dissected, cut deeply into many divisions (as the leaves of plate 86).
Dissepiments, the partitions of an ovary or a fruit (as seen in fig. 5, plate 173).
Distinct, not in combination with each other (as the styles, fig. 5, plate 30).
Divaricate, straddling widely apart (as the branches of plate 149).
Divided, cut into divisions that extend almost to the mid-rib (leaf 2, plate 4).
Dodoca, twelve.
Dorsal, pertaining to the back (dorsum).
Double-flowers, so-called; when the petals are unduly multiplied.
Downy, clothed with a coat of soft hairs.
Drupe, a stone fruit—like the plum, peach, cherry, etc.
Drupaceous, partaking of the nature of a drupe.
Ducts, closed channels.
Dunose, bushy.
Dwarf, low in stature.

E or Ex, when beginning compound words, signifies an absence of; as, edentate, toothless;
exstipulate, destitute of stipules.
Ebracteate, without bracts.
Echinate, armed with prickles (the pod of Æsculus Hippocastanum, plate 44). Echinulate, a diminutive of it. (Plate 93, fig. 7.)
Effete, past bearing (as the anther of fig. 4, plate 110).
Elaters, the erectile appendages of the spores of Equisetum. (Plate 179, fig. 6.)
Elliptical, oval or oblong, with the ends regularly rounded. (Plate 61, fig. 1.)
Emarginate, notched at the apex (the white, involucral lobes of plate 71).
Embryo, the rudimentary plantlet in the seed. (Plate 140, fig. 10.)
Endocarp, the inner layer of the walls of a fruit.
Endogenous, when the stem exhibits no distinction as to bark, wood and pith, the woody fibre and vessels being in bundles and scattered in the cellular tissue, i.e., “inside growing.”
Endosperm, the same as Albumen, which see.
Enneandrous, having nine stamens.
Ensiform, sword-shaped (as the leaves of plate 173).
Entire, when the margins of an organ are not at all toothed, cut, or divided, but perfectly even (as in the leaves of plate 170).
Ephemeral, lasting a day or less.
Epi-, upon; as
Epicarp, the exterior layer of a fruit.
Epidermis, the covering of an organ—its external skin.
Epigamous, growing close upon the ground.
Epigynous, upon the ovary (as seen in fig. 2, plate 61).
Epipetalous, borne upon the petals (as the filaments in fig. 3, plate 172).
Epiphyllous, borne upon a leaf.
Equal, of the same number or length, as the case may be, of the body in comparison.
EQUITANT, riding astraddle (as the bases of the leaves, plate 171).
Erose, as if gnawed.
Essential Organs of the flower, those absolutely necessary to fertilization, i.e., the stamens and pistils.
Estivation, see Aestivation.
Evergreen, keeping its leaves until replaced by others, or even longer.
Exalbuminous, without albumen.
Excurrent, said of a tree when the trunk is traceable to the very top. (Plate 163, fig. 1.)
Exogenous, plants with stems composed of bark, wood and pith, i.e., “outside growing.”
Explanate, spread, or flattened out. (Plate 25, fig. 9.)
Exserted, protruding out of; said of stamens and pistils when surpassing the floral envelope (see figs. 3 and 4, plate 33).
Exstipulate, destitute of stipules.
APPENDIX.

Extra-axillary, said of anything a little out of the axil (as the prickles on fig. 1, plate 33). *Extraorse,* turned outward; said of an anther when it opens away from the pistil. (Plate 72, fig. 2.)

Falicate, scythe-shaped. (Plate 147, fig. 4.)

Family, a collection of closely related genera.

Farinaceous, mealy in texture. (Plate 172, fig. 2.)

Fascicle, a close cluster.

Fascicled, growing in a bundle; *Fasciculate* (the leaves of plate 15).

Fastigiate, upright, close and parallel. (Plate 69, fig. 5.)

Faveolate, honey-combed.

Feather-veined, see 1 innate.

Female flowers, those having pistils but no stamens. (Plate 33, fig. 4.)

Fenestrate, pierced with one or more large holes.

Ferrugineous, resembling iron rust.

Fertile, capable of producing.

Fertilization, the process by which the pollen causes the embryo to become fertile.

Fibrous, composed of fibres.

Filament, the slender portion of a stamen supporting the anther (fig. 3, plate 34), or any thread-shaped appendage.

Filamentous, formed of threads.

Filiform, thread-shaped, long, slender and cylindrical. (Plate 113, fig. 3.)

Fimbriate, fringed (as seen between the stamens of fig. 3, plate 119).

Fistulose, hollow and cylindrical. (Plate 68, fig. 2.)

Flavescent, yellowish.

Fleshy, see *Sarcous.*

Fleshy Plants, those containing a great deal of substance (as that of plate 61).

Flexuous, gently bending in opposite directions. (Plate 124, fig. 1.)

Floccose, bearing tufts of long, soft hair.

Flora, an aggregation of the plants of any certain district.

Floral, pertaining to the blossom.

Floral Envelope, the leaves of the flower; includes either calyx or corolla, or both.

Floret, a diminutive flower (only used when several flowers are in the same head).

Flower. This word comprises the organs of reproduction and their envelope. (Plate 128, fig. 2.)

Foliaceous, leaf-like.

Foliolate, leaflet.

Follicle, a simple pod, opening down the inner suture. (Plate 50, fig. 4.)

Follicular, like a follicle.

Foramen, a hole or orifice (as in the anther-cells of fig. 3, plate 104).

Fornicate, arching over (as in the upper lobe of the corolla, fig. 3, plate 121).

Foveate, or *Foveolate,* deeply pitted. (Plate 105, fig. 6.)

Fusiform, not united with any other parts of a different kind.

Fringed, having a margin beset with slender appendages. (Plate 109, fig. 6.)

Fructification, the state of fruiting.

Fruit, the matured ovary and everything connected with it. (Plate 104, fig. 4.)

Frutescent, somewhat shrubby.

Fruticose, shrubby.

Fugacious, quickly falling or perishing.
GLOSSARY.

Fulvous, tawny.
Funiculus, the stalk of a seed or ovule.
Funnel-form, gradually expanding upwards (the corolla, plates 127 and 130).
Furcate, forked.
Furfuraceous, branny.
Furrowed, marked by longitudinal grooves. (Plate 63, fig. 2.)
Fusiform, shaped like a spindle (the pod of fig. 7, plate 22).

Galeate, helmet-shaped (the upper petal, fig. 3, plate 121).
Gamopetalous, see Monopetalous.
Gamosepalous, see Monosepalous.
Geminate, twin (the flowers of fig. 2, plate 77).
Gemination, the budding state.
Geniculate, bent abruptly, like a knee. (Plate 54, fig. 7.)
Genus, a group of like species.
Germ, the point of beginning of a growth.
Germination, the development of an embryo into a plantlet.
Gibbous, swollen at one place or on one side (base of style, fig. 6, plate 117).
Glabrate, almost glabrous, or becoming so with age.
Glands, small organs which secrete some oily or nectariferous product of the part, or any small swelling, whether it secretes or not (see base of petal, fig. 5, plate 15).
Glandular, furnished with glands.
Glaucous, covered with a fine, white powder that rubs off; as the bloom of the grape.
Globose, spherical, or nearly so (ovary of fig. 4, plate 125).
Globular, nearly globose (base of style, fig. 6, plate 117).
Glomerate, closely aggregated into a dense cluster (the fruits of fig. 1, plate 143).
Glomerule, a dense, head-like cluster. (Plate 94, fig. 1.)
Granular, composed of grains.
Granule, a small grain.
Guttate, spotted as if by colored drops (the petals of Hypericum, as represented by fig. 8, plate 30).
Gymnospermous, naked-seeded (as seen in fig. 5, plate 163).
Gynandrous, where the stamens are borne on the pistil. (Plate 170, fig. 4.)
Gynaxicum, name for the pistils when taken altogether.
Gynobase, a special support for the pistils (as seen in fig. 4, plate 146).

Habitat, a situation in which a wild plant grows.
Halberd-shaped, see Hastate.
Halved, when a body appears as if one half were taken away. (Plate 169, fig. 3.)
Hastate, shaped like a halberd (see leaves, plate 123).
Head, an aggregation of florets more or less globose (see plate 76).
Heart-shaped, of the shape a heart is commonly drawn. See Cordate.
Hemi-, half; in Greek derivatives, as
Hemicyclus, half-fruit. See Mericarp.
Heptagynous, having seven pistils or styles.
Heptandrous, seven-stamened.
Herb, a plant that dies down to ground in autumn.
Herbaceous, like an herb.
Hermaphrodite, same as Perfect, which see.
Heterogamous, bearing two sorts of flowers as to their stamens and pistils, as in many Compositae.
Heteromorphous, having more than one shape (the leaves, figs. 2, 3, 4, 5, plate 151).
Hexa-, six; in Greek derivatives; as, hexagonal, six-angled.
Hexagnous, having six pistils or styles.
Hexandrous, six-stamened.
Hilum, a scar of attachment of a seed. (Plate 43, fig. 5.)
Hirsute, hairy.
Hispid, beset with stiff hairs.
Hoary, greyish-white.
Homogamous, when the flowers are all of one kind in the head.
Homogeneous, all of one kind.
Homotropous, curved one way.
Hood, see Galea.
Horn, a spur or like appendage.
Hybrid, a cross between two allied species.
Hypocrateriform, salver-shaped (the corolla of plate 108).
Hypogynous, inserted under the pistil (as the stamens, fig. 3, plate 69).
Icosandrous, when twelve or more stamens are inserted upon the calyx.
Imbricate, -ed, or -ive, placed like shingles upon a roof (as the scales of the cones, plate 163).
Imparipinnate, pinnate, with a single leaflet at the apex of the common petiole (as in fig. 5, plate 50).
Imperfect flowers, wanting one or the other of the essential organs (as in figs. 3 and 4, plate 33).
Incised, deeply and irregularly cut (the leaves of plate 95).
Included, when of the parts in question some do not project beyond others.
Incomplete flowers, those in which the calyx or corolla is wanting.
Incipient, leaning or resting upon, as anthers when looking inwards.
Incurred, curving inward. (Plate 67, fig. 5.)
Indefinite, too numerous to mention, or when the parts are not uniform in different individuals.
Indehiscient, said of a fruit that neither splits nor bursts. (Plate 37, fig. 6.)
Indigenous, a native of the country in which it is found.
Individual, different plants of the species.
Induplicate, with the edges turned inward (the top leaves of plate 74).
 Inferior, grown below some other organ (as the ovary, fig. 3, plate 70).
 Inflated, puffed out like a bladder. (Plate 99, fig. 3.)
 Inflexed, bent inward at an angle.
Inflorescence, the arrangement of flowers on the stem.
Infra-axillary, beneath an axil.
Infundibuliform, see Funnel-shaped.
Innate, said of an anther when attached to the very tip of its filament. (Plate 58, figs. 4 and 5.)
Insertion, the point at which an organ or part of an organ is attached to another.
Introrse, facing inward.
Inverse, or Inverted, in a position opposed to an original direction. (Plate 104, fig. 3.)

Involute, grown inwards from the edges (the upper leaves of plate 74).

Irregular flowers. This name is given when members of the same sort as, for instance, the petals are unlike in shape or size (fig. 3, plate 46).

Jointed, separate or separable at one or more places into pieces (the stamens, fig. 2, plate 148; the plant, plate 61).

Keel, see Carina.

Kidney-shaped, resembling a kidney in general outline. (Plate 61, fig. 6.)

Labiate, lipped. (Plate 97, fig. 7.)

Laciniate, slashed into deep narrow lobes (the leaves of plate 95).

Lactescent, milky, or producing a milky juice.

Lamellar, consisting of flat plates.

Lanate, woolly.

Lanceolate, lance-shaped (leaves of plate 114).

Leguminous, pertaining to legumes, or the order Legummosae.

Lenticular, lens-shaped. (Plate 152, fig. 8.)

Ligneous, woody.

Ligulate, having a ligule.

Ligule, the strap-shaped limb of the corolla of many Composite. (Plate 81, fig. 5.)

Limb, the border of a monopetalous corolla.

Linear, flat and narrow, with parallel margins, as the leaves of the hemlock. (Plate 164, fig 3.)

Lineate, marked with parallel lines.

Lip, the principal lobes of a bilabiate corolla or calyx (plainly seen in the flowers of plate 113); also the peculiar petal of the orchids. (Plate 170, fig. 3.)

Lobe, any division of a leaf or other organ.

Loculicidal, splitting through the middle of the dorsum of each cell. (Plate 23, fig. 5.)

Lunate, crescent-shaped.

Lyrate, lyre-shaped. (Plate 24, fig. 2.)

Maculate, spotted or blotched. (Plate 68, fig. 2.)

Male flower, having stamens but no pistils. (Plate 33, fig. 3.)

Mamme, teat-like projections. (Plate 103, fig. 2.)

Marcescent, withering without falling off (as the petals of plate 30).

Marginal, belonging to the edge.

Masked, see Personate.

Medium, pertaining to the middle.

Medullary, having the nature of pith.

Membranaceous, membrane-like (as the sheaths, fig. 2, plate 168).
Mericarp, one carpel of an umbilliferous fruit. (Plate 36, fig. 9.)
Midrib, the main rib of a leaf.
Monadelphous, said of stamens when united by their filaments into one set. (Plate 46, fig. 4)
Monandrous, having only one stamen.
Moniform, necklaced, i.e., contracted at intervals. (Plate 23, fig. 5.)
Monocotyledonous, having only one cotyledon.
Monoecious, having stamens or pistils only. (Plate 33, figs. 3 and 4.)
Monogynous, having but one pistil or style. (Plate 102, fig. 4.)
Monopetalous, when the corolla is united into one piece. (Plate 102, fig. 3.)
Monosepalous, when the sepals are united into one body (as in the flower of plate 127).
Monospermous, one-seeded.
Mucronate, tipped with a short, abrupt point. (Plate 179, fig. 3.)
Multifarious, in many rows.
Multifid, many-cut.
Multilocular, many-celled.
Muricate, beset with short, hard points. (Plate 44, fig. 5.)

Napiform, shaped like a rounded turnip.
Naturalized, an introduced plant that has run thoroughly wild, and perfects its seed.
Nectar, honey, or honey-like secretions.
Nectariferous, bearing honey, or having a nectary.
Nectary, a cavity or gland that secretes nectar.
Needle-shaped, see Acrostis.
Nerve, used to distinguish leaf-ribs or veins when parallel, and more or less straight.
Netted-veined, when the veins branch and anastomose, forming a net-work.
Nodding, said of an organ when the summit hangs downward.
Nodose, nubby.
Normal, in a usual way, according to rule.
Nuciform, nut-shaped.
Nut, a hard, bony, mostly one-seeded fruit. (Plate 43, fig. 5.)
Nullet, diminutive of nut; the stone of a drupe.

Ob-, a prefix signifying inversion or opposition; as
Obcordate, heart-shaped, with the notch upward, and the point of fixture or support at the apex. (Plate 25, fig. 9.)
Oblanceolate, lance-shaped, with the point downward (the leaves of plate 104).
Oblique, applied to organs having unequal sides. (Plate 147, fig. 3.)
Oblong, much longer than broad (as the brown leaf, plate 160).
Obovate, ovate, with the broadest end uppermost. (Plate 151, fig. 3.)
Obtuse, blunt-ended (the apex of leaf 3, plate 51).
Ochroleucus, dull cream-color.
Octo-, eight, in Greek derivatives; as
Octogynous, eight-pistilled.
Octandrous, eight-stamened.
Offset, a branch given off near the ground and taking root.
Opposite, said of leaves when their petioles are exactly opposite each other upon the stem. (Plate 132.)
Orbicular, circular in outline. (Plate 18, fig. 2.)
Organ, any member of a plant—as a petal, stamen, leaf, branch, etc., etc.
Orthotropous, said of an ovary when its point of attachment is at its base and the apex is in direct line with it. (Plate 28, fig. 6.)

—ose, as a suffix means like whatever root-word precedes it; as, racemose—like a raceme.

Osseous, bony.

Oval, broadly elliptical. (Plate 151, fig. 2.)

Ovary, that portion of the pistil that contains the ovules. (Plate 28, fig. 5.)

Ovoid, a solid oval. (Plate 28, fig. 6.)

Ovule, that organ that is destined to become a seed (plainly seen in fig. 5, plate 125).

Palea, pl. Paleæ, the chaff of composite receptacles.

Paleaceous, chaffy.

Palmate, when the organs in question radiate more or less from the point where some other organ is attached (the veins of the leaf, plate 18; the leaflets, plate 40 (digitate); and the lobes of the leaf, fig. 2, plate 8).

Palmately, in a palmate manner, as above.

Panicle, an open cluster (the arrangement of the flowers, fig. 1, plate 119).

Papery, see Papyraceous.

Papilionaceous, spreading like a butterfly. (Plate 50, fig. 1.)

Papilla, pl. Papillae, small mammae (as seen on the corolla, fig. 3, plate 79).

Pappus, thistle-down. (Plate 81, fig. 3.) In Compositae this, with chaff, teeth, or scales, represents the calyx in this order.

Papyraceous, of the texture of writing paper.

Parenchyma, the pulp of plants.

Parietal, attached to the walls (as the ovules in fig. 5, plate 7).

Parted, cleft almost to the base. (Plate 4, fig. 4.)

Pauci-, means few when prefixed to root words. (Pauciflorous, few-flowered.)

Pear-shaped, solid obovate.

Pedate, palmately cleft, with the lobes again cleft. (Plate 1, fig. 2.)

Pedicel, the individual stalk of each flower in a cluster. (Plate 104, fig. 2.)

Peduncle, the main stalk of a flower cluster (fig. 2, plate 104), or the flower stalk when the plant is one-flowered (as seen above the leaves in plate 175); or when the flowers are single (as in plate 2). The same distinctions pertain to the stalk of heads and clusters (as in plates 62 and 70).

Peltate, shield-shaped (the style of fig. 3, plate 19); said of a leaf, no matter what its shape, when the petiole is attached anywhere within its margin (as in plate 18).

Pendent, hanging (the fruit of fig. 3, plate 15).

Pendulous, somewhat hanging (the flowers of plate 49).

Penicillate, like a painter’s pencil. (Plate 97, fig. 6.)

Penta-, five, in Greek derivatives; as

Pentagynous, having five pistils or styles.

Pentandrous, five-stamened.

Perennial, growing on year after year.

Perfect, a flower having the essential organs.

Perfoliate, passing through a leaf, or appearing so (the leaves, plate 79).

Perforate, pierced with holes, or having transparent dots giving that appearance. (Plate 30, fig. 7.)

Perianth, the leaves of the flower, especially when they cannot be distinguished as to calyx or corolla.

Pericarp, a ripened ovary; or the fruit walls.
Perigynium, arranged around the pistil.
Perigynous, when the petals and stamens are borne on the calyx. (Plate 55, fig. 2.)
Periphery, the outside of an organ.
Persistent, remaining beyond the usual time.
Personate, the throat of a bilabiate corolla when masked by some projection (as seen in the flowers of plate 111).
Petal, a leaf of the corolla; usually bright-colored.
Petaloid, when any other organ is petal-like.
Petiole, the stem of a leaf.
Petiolate, possessing a petiole.
Petiolate, said of leaflets when having their own petioles.
Phewgavious, Phanogams, Phcenogams, plants bearing flowers and producing seeds.
Pilose, clothed with fine soft hairs.
Pinna, the petiole of a pinnate leaf.
Pinnule, a secondary pinna of a bipinnate leaf.
Pinnate, feather-form; said of a compound leaf when its leaflets are arranged along the main petiole (as in plate 50).
Pinnatifid, cut until partaking of the nature of a pinnate leaf. (Plate 96, fig. 4.)
Pistil, the female organs of a flower (usually central), taken as a whole (fig. 5, plate 130: the lowest portion is the receptacle; next above, the ovary; next, the style, and at the apex, the stigmas).
Pistillate, said of a flower having pistils and no stamens. (Plate 33, fig. 4.)
Pith, the central portion of exogenous stems.
Pitted, having small depressions upon the surface.
Placenta, that surface or part of an ovary to which the ovules are attached. (Plate 25, fig. 10.)
Placentiferous, having the nature of a placenta, or having placentae.
Plaited, arranged like a fan that admits of closure.
Plane, flat.
Plicate, see Plaited.
Plumose, feathery. (Plate 1, fig. 9.)
Pluri-, in composition, several; as
Plurifoliate, many-leaved.
Pod, any kind of capsule. (Plate 11, fig. 11; plate 22, fig. 7; plate 24, fig. 3; plate 132, fig. 3.)
Pollen, the fertilizing agent of a plant, formed in the anther cells. It is varied in form, but usually granular. (Plate 107, fig. 5; plate 1, fig. 7; plate 16, fig. 8; plate 22, fig. 9; plate 27, fig. 5; plate 47, fig. 5; plate 68, fig. 8; plate 83, fig. 8; plate 93, fig. 7; plate 101, fig. 5; plate 163, fig. 11; plate 164, fig. 9; plate 167, fig. 6; plate 103, fig. 5; plate 105, fig. 6; plate 109, fig. 7; plate 169, fig. 10, and plate 175, fig. 4.)
Pollen-mass, applied when the grains cohere into a mass. (Plate 135, fig. 4.)
Poly-, many; in Greek derivatives; multi in Latin, as
Polyadelphous, when stamens are united by their filaments. (Plate 50, fig. 2.)
Polyandrous, many-stamened, more than twenty.
Polygamous, having perfect and separate flowers upon the same plant.
Polygonal, many-angled.
Polygynous, many-pistilled or -styled.
Polyembryous, of varying forms.
Polypetalous, when the petals are separate or distinct (whether few or many). Opposed to Monopetalous.
GLOSSARY.

Polysépalous, same as the above when applied to the calyx. Opposed to Monosepalous.
Porous, full of holes.
Prefloration, same as Aestivation, which see.
Prefoliation, same as Vernation, which see.
Premorse, ending abruptly (the root of plate 177).
Prickles, short, angular thorns. (Plate 33, fig. 1.)
Prismatic, having three or more angles bounding flat or hollowed sides.
Process, a superficial projection.
Procumbent, trailing upon the ground.
Prostrate, lying flat upon the ground.
Puberulent, covered with an almost invisible down.
Pubescent, downy.
Puberulent, see Glaucous; or if the powder is only such in appearance.
Punctate, see Perforate.
Pyramidal, shaped like a pyramid.
Pyrene, Pyrena, the nutlet, especially said of a drupe when small.
Pyxis, Pyxidium, a pod opening by a circumscissile line; the top falling off like a lid, (Plate 108, fig. 3.)

Quadri-, four; in Latin derivatives.
Quadrangular, four-angled.
Quadrifid, four-cleft.
Quaternae, in fours.
Quinate, in fives.

Raceme, where one-flowered pedicels are arranged in succession along a general peduncle. (Plate 11, fig. 1.)
Rachis, see Rhachis.
Radiate, pertaining to the ray.
Radicle, the stem part of the embryo.
Raphe, see Rhaphe.
Ray, the marginal flowers of a composite head, especially when different from the rest, and diverging. The pedicels of an umbel (seen in the flowers of plate 84, and the umbel, plate 68).
Receptacle, the support of a flower, i. e., the thickened upper surface of the apex of the peduncle or pedicel (fig. 4, plate 1); particularly, however, the place of attachment of the flowers of a head.
Recurved, curved outward or backwards (the styles, fig. 5, plate 130.)
Reflexed, bent outward and downward. (Plate 134, fig. 3.)
Regular, when the parts are all similar.
Reniform, see Kidney-shaped.
Repand, wavy-margined. (Leaves of plate 39.)
Repandly-toothed, rounded-toothed (the margins of the leaves, plate 7).
Repent, creeping along the ground by successive rootings.
Reticulated, formed into a net-work, or rather appearing as if covered by a net. (Plate 99, fig. 4; plate 167, fig. 2.)
Retroflexed, same as Reflexed, which see.
Retuse, so blunt at the apex as to be slightly indented.
Revolute, rolled backward; usually said of margins of organs or their extremities (both phases are apparent in the petals, fig. 2, plate 71).

Rhachis, back-bone; the axis of a spike.

Rhaphes, the prolongation of a seed stalk along the side of an ovule. (Plate 22, fig. 6.)

Rhizoma, the main root.

Rib, the main and largest pieces of the framework of a leaf.

Ringent, gaping open (the flowers of plate 113).

Rootlets, small branches of a rhizome. (Plate 138, fig. 2.)

Rootstock, that portion of the stem where it joins the root. (Plates 20 and 167, fig. 2.)

Rosrate, bearing a beak. (Plate 4, fig. 5.)

Rosulata, forming a rosette (as the leaves, fig. 1, plate 29)

Rotate, wheel-shaped (the corollas of plate 108).

Rotund, having a roundish outline (the leaves, fig. 1, plate 77).

Rudimentary, imperfectly developed.

Rugose, wrinkled (as the corn of plate 168).

Runner, a slender, prostrate branch, rooting at the end or joints. (Plate 17, fig. 2.)

Sac, a closed membrane.

Sagittate, shaped like an arrow-head.

Salver-form, when the limb of the corolla spreads at right angles from a slender tube.

Samara, a winged fruit. (Plate 35, fig. 9.)

Sarcous, (in this work) fleshy.

Saw-toothed, see Serrate.

Scales, small bracteate rudiments of leaves, or bodies of that nature (as on the base of the stem, fig. 1, plate 105).

Scandent, climbing.

Scape, a peduncle when starting from near the ground (as in fig. 2, plate 19).

Scaphoid, boat-shaped.

Scarios, thin and dry.

Scorpioid, circinate at the end (as the unilateral racemes, plate 57).

Scurf, dandruff-like superficial scales.

Scutellate, platter-shaped (seen upon the rachis, fig. 6, plate 151).

Segment, one of the subdivisions of any cleft body.

Segregate, see Separate.

Semi-, half; in Latin derivatives.

Semiconoid, depressed conoidal.

Sempervirent, see Evergreen.

Sepal, a lobe of the calyx. (Plate 128, fig. 2.)

Sepaloid, having the appearance of a sepal.

Septa, partitions (seen in fig. 5, plate 173).

Septicidal, said of a pod that splits through its partitions.

Sericeous, silky.

Serrate, having teeth like a saw (leaf margins, plates 40, 69, 70, etc.).

Serrulate, diminutive of the last.

Sessile, said of organs that have no individual stem (as the leaves of plates 28 and 30; the anthers, fig. 5, plate 138, etc.).

Seta, a bristle.

Sheathing, wrapped around a stem (the bases of the leaves, plates 31 and 167; the stipules, plates 64, 68, etc.).
Shield shaped, see Peltate.

Silicle, a pouch, or short pod. (Plate 25, fig. 9.)

Silique, a long pod of the mustard family. (Plate 23, fig. 5.)

Simple, of one piece.

Sinistrosely, turned to the left.

Sinuate, said of a leaf when its margin waves out and in. (Plate 143, fig. 2; plate 19, fig. 1.)

Sinus, the recess between two parts of an organ (as the re-entering angle in the fruits of plate 174).

Solitary, unassociated with its kind.

Solarly, with the sun; — solarily voluble, turning daily to keep face to the sun.

Spadix, a fleshy spike of flowers. (Plate 167, fig. 3; plate 169, fig. 6.)

Spatile, a large bract covering an inflorescence. (Plate 169, fig. 2.)

Spatulate, shaped like a spatula. (Plate 105, fig. 3.)

Species, the individuals of a genus having special characters belonging to themselves and no other known plant.

Spicate, belonging to or disposed like a spike, an arrangement of flowers similar to a raceme, but the flowers are sessile (as in plate 107).

Spine, a thorn (as seen on fig. 1, plate 61).

Spindle-shaped, see Fusiform.

Spinescent, degenerating into a thorn (as the end of the branch, plate 41).

Spinose, thorny. (Plate 15, fig. 1.)

Spore, the reproducing grains of cryptogams.

Squamate, Squamoso, scaly. (Plate 105, fig. 1.)

Squarrose, where scales, leaves, or other appendages, spread widely from the axis.

Stalk, a stem.

Stamen, the male organ of a flower (usually arranged around the pistil, and appearing generally like those seen in fig. 2, plate 10. In fig. 3, plate 34, an enlarged stamen is depicted; the stem part is the filament; the head, the anther).

Standard, the upper petal of a papilionaceous corolla. (Plate 46, fig. 3 a.)

Stellate, disposed in a star-like manner.

Sterile, incapable of producing its kind.

Stigma, the highest point of a pistil (see Pistil); the receptive portion of the female organs of a plant. (Plate 178, fig. 4.)

Stigmatose, that portion of a style resembling a stigma in being capable of receiving the pollen.

Stipe, the stalk of a pistil, or ovule when present. (Plate 149, fig. 6.)

Stipel, the stipule of a leaflet.

Stipitate, being possessed of a stipe (as the ovule, fig. 6, plate 28).

Stipulate, having stipules.

Stipules, the appendages at the base of certain leaves (seen in plate 151).

Stoloniferous, producing stolons or rooting shoots.

Stomata, the breathing pores of leaves. (Plate 179, fig. 8.)

Strap-shaped, long, flat and narrow.

Stricate, marked with longitudinal, slender grooves.

Strict, straight.

Strobile, a multiple, cone-shaped fruit. (Plate 159, fig. 5; plate 155, fig. 1.)

Style, that portion of the pistil that unites the stigma to the ovary (see description of pistil).

Sub-, almost; as, subcordate, nearly heart-shaped.
Subulate.—Axil-shaped, which see.
Succulent, pulpy, or juicy.
Suffrutescent, slightly shrubby.
Sulcate, deeply channelled.
Supra-axillary, growing above an axil.
Suspenscd, hanging down (as the ovule, fig. 3, plate 12).
Suture, a line of junction when parts are grown together.
Sword-shaped, see Ensiform.
Symmetrical flower, one whose parts are equal in number, each kind with the other, or in multiples (flower of plate 175).
Syngenesious, said of stamens when united by their anthers.
Taper-pointed, tapering gradually to a point. See Acuminate.
Tap-root, a stout root with a tapering body. (Plate 63, fig. 7.)
Tawny, dull brownish-yellow.
Terete, long and round; same as cylindrical, only may taper. (Plate 132, fig. 3.)
Terminal, belonging to the summit.
Ternate, arranged in threes.
Testa, the external seed coat.
Tetra-, four; in Greek composites; as, Tetradynamous, when having six stamens, two of them shorter than the rest. (Plate 23, fig. 2.)
Tetragonal, four-angled.
Tetragynous, four-pistilled or -styled.
Tetrandrous, four-stamened.
Thecla, a case.
Thorn, see Spine.
Thread-shaped, see Filiform.
Throat, the opening of a tubular corolla, a little below the ring where the limb joins the tube.
Thyrsus, a compact pyramidal panicle. (Plate 43, fig. 1.)
Tomentose, woolly.
Toothed, furnished with sharp projections on the margin that do not point forward.
Top-shaped, cone-shaped, the apex downward.
Torus, the receptacle of the flower. (Plate 1, fig. 4.)
Tri-, three; as
Triadelphous, said of stamens when united by their filaments into three bundles.
Triandrous, three-stamened.
Trifid, three-cleft.
Trifoliolate, three-leaved.
Trifoliate, of three leaflets. (Plate 48.)
Trigynous, having three pistils or styles. (Plate 56, fig. 3.)
Trilobed, having three lobes (the leaves of plate 2).
Triquetrous, sharply three-angled—like a beechnut.
Triterrinate, three times ternate, i. e., divided into threes three times.
Tricose, shaped like a grain of wheat. (Plate 110, fig. 6.)
Trumpet-shaped, tubular, enlarging toward the summit (the flowers of plate 130).
Truncate, as if cut off at the apex.
Tubercle, a small excrescence.
Tuberced pimply.

Tubular elongated and hollow.

Tumid swollen at one portion.

Turbinate top-shaped.

Turgid swollen throughout.

Turnip-shaped, broader than high, *i.e.*, narrowed below.

Twin, see **Geminate**.

Twining, see **Voluble**.

Typical, embracing all the characteristics of a species, genus, or family.

Umbel, said of an arrangement of peduncles when like the ribs of an umbrella, bearing flowers in a flat or convex canopy (as in plate 63).

Umbellet, a small umbel, formed upon the apex of a division of an umbel (as in plate 67).

Umbilicate, depressed in the centre, like one end of an apple. (Plate 139, fig. 4)

Unarmed, destitute of spines, prickles, or like appendages.

Uncinate, hooked. (Plate 92, fig. 4)

Undulate, see **Wavy**.

Uni, one; as unicellular, one-celled.

Unisexual, having stamens or pistils only. (Plate 14, figs. 3 and 7)

Urcolate, urn-shaped.

Urticle, a small, thin-walled, one-seeded fruit. (Plate 153, fig. 5)

Valve, one of the pieces into which a pod splits. (Plate 173, fig. 5)

Valvate, said when parts meet each other by their edges, without over-lapping.

Vascular, containing vessels.

Vaulted, see **Fornicate**.

Veins, the small ribs forming the frame-work of leaves, or other organs.

Veiny, said when the veins are evident.

Veinlets, diminutive of veins.

Venation, the method of arrangement of veins.

Ventral, the opposite of dorsal.

Vermicular, worm-like.

Vernation, the methodical arrangement of leaves in their buds.

Verrucose, warty. (Plate 72, fig. 6)

Versatile, attached by one point, with ability to swing to and fro. (Plate 178, fig. 3)

Vertex, the same as **Apex**, which see.

Vertical, perpendicular; at right angles to the plane of the ground.

Verticil, a Whorl, which see.

Verticillaster, a whorl of small flowers, as in many mints.

Verticillate, whorled.

Vesicle, a little bladder. (Plate 153, fig. 7)

Vexillum, the standard of a pappilionaceous flower. (Plate 46, fig. 3a)

Villosse, shaggy, with long, soft hairs.

Virgate, wand-like. (Plate 114, fig. 1)

Viscid, having a glutinous surface.

Vitta, the oil-tubes of Umbelliferous fruits.

Voluble, twining (as the stem of plate 130).

Wavy, when the margin is alternately convex and concave (as the leaves of plate 19).
Wedge-shaped, see Cuneate.
Wheel-shaped, see Rotate.
Whorl, Whorled, arranged in a circle around the stem (as the leaves of plates 78 and 114).
Winged, having a membranous expansion (see Alate).
Woolly, clothed with entangled, soft hair.
BIBLIOGRAPHY.

Am. Disp.—The American Dispensatory. John King, M.D. Cincinnati, 1870.

Griff., Med. Bot.—Medical Botany; or Descriptions of the more Important Plants used in Medicine, Etc. R. Griffith, M.D. Phila., 1847.

King, Am. Disp.—The American Dispensatory. John King, M.D. Cincinnati, 1866.

Peck, Blk. Spruce.—The Black Spruce. Albany Institute, 1875. Chas. H. Peck, A.M.

Read, Stram.—On the Use of Datura Stramonium in Certain Diseases. Alex. Read, M.D., 1816.

Spratt, Tox.—A Compendium of Toxicology of the Principal Indigenous and Exotic Plants. G. Spratt, Surgeon. London (no date).

BIBLIOGRAPHY.

U. S. Ag. Rep.—United States Agricultural Reports, especially 1870.
Wittstein.—The Organic Constituents of Plants and Vegetable Substances, and their Chemical Analysis. G. C. Wittstein, M.D. Melbourne, 1878.

And numerous Pamphlets, Brochures, Essays, Letters, Journals, and Works on Botany, Medicine, Travel, and Chemistry, acknowledged in the text.
Pulsatilla Nuttalliana, 1.
Anemone Hepatica, 2.
Ranunculus sceleratus, 3.
Ranunculus repens, 4.
Ranunculus bulbosus, 5.
Ranunculus acris, 6.
Calthula palustris, 7.
Helleborus viridis, 8.
Hydrastis Canadensis, 9.
Appendix.

Hale

Chem.

997,

3,

30

Jorn.

17;

200;

Journ.

Cat,

Med.,

Gray

2.

Allen

Rem.,

"1-

154,

Bot.,

17.

7,

Bot,

1

Am.

S.

&

Griff.

16,

Phar.,

Flor.

S.

Mcxicana,

Y.,

1879,

19;

Bot.

"''-

23

Y.,

p.

I,

S.

914;

683;

2,

Ency..

Witt.stein,

Bot.,

Bot.

S.

; N.

686

Darl.

Disp.,

racemosa,

262:

490-4,

1884.62;

26,

480.

44;

Wittstein,

Am.

Phar.,

Clapp

104;

1881,

98;

Phar.,

127;

Bot.

Phar.,

73,

If.

f.

36;

Med,

Am!

Torr.

Torr.

Williams

Hale

Griff.

Am,

438;

Porch.

Bot,

Raf.

ct.

Am.

1883,

Wigand,

purpurea,

Rem,,

t.

Resourc.

3,

36;

&

32;

Chem.

Resourc. -j^.

South.,

43-

19

Porch.

South.,

7652,

Mat.

731

Bib.,

211

20;

730;

Am.

Griff.

S.

Raf.

f.

4922,

loi

1882,

45

Am.

B.

Loudon

186;

7678,

i,

p:ncy.,

92

34;

ct.

Kinf^'

Med.'

Hughes

844

Bot

i,

f.

78;

Am.

Med.

Med.'

PI.

Y.,

Club,

Han.,

B

Lindl.

alba,

f.

Horn.,

Carb.

i8;

Encyc.

Meds.

Horn.

Man.,

Bot

35;

Berberidaccae,

Phar.,

Porch.

872

Weeds,

Torr.

Bot,

Flor.

i,

Flor.

Hom.

Torr.

47;

Lindl.

T

Ency.,

and

Plncyc,

of

sf.

2.

f.

yj

Y.,

King

54;

Ency.,

S.

459

Man.,

King

4914,

S.

96;

Bib.,

618;

N.

97

6,

2j;

f.

Phar.,

i,

Gray

32.7;

Dur.

2d

Kiff.

34.5;

f.

Gray

135.5;

f.

Phar.,

Gray

0.5;

f.

Bot.

222

Gray

462.

222,

Bot.

54;

Am.

Weeds, 119;

Rem.,

t.

Resourc.

3,

36;

&

32;

Chem.

Resourc. -j^.

South.,

227;

Bot.

f.

yj

Y.,

King

54;

Ency.,

S.

459

Man.,

King

4914,

S.

96;

Bib.,

618;

N.

97

6,

2j;

f.

Phar.,

i,

Gray

32.7;

Dur.

2d

Kiff.

34.5;

f.

Gray

135.5;

f.

Bot.

222

Gray

462.

222,

Bot.

54;

Am.

Weeds, 119;

Rem.,

t.

Resourc.

3,

36;

&

32;

Chem.

Resourc. -j^.

South.,

227;

Bot.

f.

yj

Y.,

King

54;

Ency.,

S.

459

Man.,

King

4914,

S.

96;

Bib.,

618;

N.

97

6,

2j;

f.

Phar.,

i,

Gray

32.7;

Dur.

2d

Kiff.

34.5;

f.

Gray

135.5;

f.

Bot.

222

Gray

462.

222,

Bot.

54;

Am.

Weeds, 119;

Rem.,

t.

Resourc.

3,

36;

&

32;

Chem.

Resourc. -j^.

South.,

227;

Bot.

f.

yj

Y.,

King

54;

Ency.,

S.

459

Man.,

King

4914,

S.

96;

Bib.,

618;

N.

97

6,

2j;

f.

Phar.,

i,

Gray

32.7;

Dur.

2d

Kiff.

34.5;

f.

Gray

135.5;

f.

Bot.

222

Gray

462.

222,

Bot.

54;

Am.

Weeds, 119;

Rem.,

t.

Resourc.

3,

36;

&

32;

Chem.

Resourc. -j^.

South.,

227;

Bot.

f.

yj

Y.,

King

54;

Ency.,

S.

459

Man.,

King

4914,

S.

96;

Bib.,

618;

N.

97

6,

2j;

f.

Phar.,

i,

Gray

32.7;

Dur.

2d

Kiff.

34.5;

f.

Gray

135.5;

f.

Bot.

222

Gray

462.

222,

Bot.

54;

Am.

Weeds, 119;

Rem.,

t.

Resourc.

3,
BIBLIOGRAPHICAL INDEX.

Chelidonium majus, 21.

Sanguinaria Canadensis, 22.

Sinapis alba, 23.

Sinapis nigra, 24.

Thlaspi Bursa- Pastoris, 25.

Raphanus raphanistrum, 26.

Viola tricolor, 27.

Helianthemum Canadense, 28.

Drosera rotundifolia, 29.

Hypericum perforatum, 30.

Lychmis Gilthago, 31.

Geranium maculatum, 32.

Bigel. Am. Med. Bot., 1, t. 8, 84; Bent.

Xanthoxylum Americanum, 33.

Ptelea trifoliata, 34.

Atlantis glandulosus, 35.

Rhus glabra, 36.

Rhus venenasa, 37.

Rhus Toxicodendron, 38.

...
BIBLIOGRAPHICAL INDEX.

Genista tinctoria, 42.

Trifolium pratense, 47.

Trifolium repens, 48.

Melilotus officinalis, 49.

Robinia Pseudacacia, 50.

Phaseolus vulgaris, 51.

Baptisia tinctoria, 52.

Gymnocladus Canadensis, 53.

Genus Rivale, 54.

Fragaria vesca, 55.

Pirus Americana, 56.

Penthorum sedoides, 57.

Hamamelis Virginiana, 58.

Epilobium palustre, 59.

Eutrocha biennis, 60.

Opuntia vulgaris, 61.

Eryngium yuccafolium, 62.

Pastinaca sativa, 63.

Archangelica atropurpurea, 64.

Aethusa cynapium, 65.

Trachium aureum, 66.

Cicuta maculata, 67.

Conium maculatum, 68.

Aralia racemosa, 69.

Aralia quinquefolia, 70.

Cormus floride, 71.

Cormus cincinata, 72.
INDEX.

N.

Tanacetum vulgare, 86.

Artemisia vulgaris, 87.

Artemisia Absinthium, 88.

Gnaphalium polyccephalum, 89.

Erechtites hieracifolia, 90.

Seneo aureus, 91.

Lappa officinalis, 92.

Chichorium Intybus, 93.

Preunastes Serpentaria, 94.

Taraxacum Dens-Leonis, 95.

Lactuca Canadensis, 66.

INDEX.

Lobelia cardinalis, 97.

Lobelia syphilitica, 98.

Lobelia inflata, 99.

Arctostaphylos Uva-Ursi, 100.

Epigaea repens, 101.

Gaultheria procumbens, 102.

Kalina latifolia, 103.

Chimaphila umbellata, 104.

Monotropa uniflora, 105.

Lilac verticillata, 106.

APPENDIX.

Plantago major, 107.

Anagallis arvensis, 108.

Catalpa bignonioides, 109.

Verbascum thapsus, 110.

Linaria vulgaris, 111.

Scrophularia nodosa, 112.

Chelone glabra, 113.

Veronica Virginica, 114.

Euphrasia officinalis, 115.

Menthula piperita, 116.

Lycopus Virginicus, 117.

Hedeoma pulegioides, 118.

Gray Flora, 361; Chap. Bot., 316; U. S. Phar., 175, 237.

Collinsonia Canadensis, 119.

Scutellaria lateriflora, 120.

Lamium album, 121.

Hydrophyllum Virginicum, 122.

Loudon Ency., f. 2129, 132; Allen Ency., 5, 10; Gray Flora, 154; Gray Man., 367; Am. Hom. Pharr., 251.

Convulvulus arvensis, 123.

Solanum Dulcamara, 124.

Solanum nigrum, 125.

Hyoscyamus niger, 126.

Datura Stramonium, 127.

Nicotiana Tabacum, 128.

Menyanthes trifoliata, 129.

Gelsemium sempervirens, 130.

Spigelia Marilandica, 131.

Apocynum androsaemifolium, 132.

Apocynum cannabinum, 133.

Asclepias corvina, 134.

Asclepias tuberosa, 135.

Chionanthus Virginica, 136.

Francus Americana, 137.

Aristolochia Serpentina, 138.

Phytolacca decandra, 139.

Chenopodium anethioidicum, 140.

Polygonum acre, 141.

Fagopyrum esculentum, 142.

Rumex crispus, 143.

Rumex obtusifolius, 144.

Lindera Benzoin, 145.

Dirca palustris, 146.

Euphorbia hypericifolia, 147.

Euphorbia corollata, 148.

Euphorbia Ipecacuanha, 149.

Euphorbia Lathyris, 150.

Stillingsia sylvatica, 151.

Celtis occidentalis, 152.

Urtica urens, 153.

Cannabis sativa, 154.

Humulus lupulus, 155.

Juglans cinerea, 156.

Carya alba, 157.

Castaena vesca, var. Americana, 158.

Ostrya Virginica, 159.

Myrica cerifera, 160.

Salix purpurea, 161.

Populus tremuloides, 162.

Abies nigr a, 163.

Abies canadensis, 164.

Thuja occidentalis, 165.

Juniperus Virginiana, 166.

Arisema triphyllum, 167.

Arisema dracontium, 168.

Symphoricarpus foetidus, 169.

Cypripedium pubescens, 170.

Lachnanthes tinctoria, 171.

Aletris farinosa, 172.

Iris versicolor, 173.

Dioscorea villosa, 174.

Trillium pendulum, 175.

Veratrum viride, 176.
317; Am. Hom. Phar., 449; Fluck and Han., 695; U. S. Phar., 374; Am. Disp., 852; Allen Ency., 10, 95; Hughes Phar., 764.

Chamaelirium luteum, 177.

Lilium superbium, 178.

Equisetum hyemale, 179.

Lycopodium clavatum, 180.

INDEX.

A
Abalon albiflorum 177
Abies alba 163-3
balsamea 163-2
balsamifera 163-2
Abies Canadensis 164
denticulata 163
excelsa 163-2
Larix 163-2
Menziesii 163-2
Abies nigra 1
pecdinata 163-2
pecunnata 163-2
Abrus precatorius 46-6
Absinthe 88-2
Absinthin 88-2
Absinthium 88
officinale 88
vulgare 88
Absinthol 88-2
Abida rufescens 14-2
Acacia Adansoni 46-4
Arabica 46-4
Catechu 40-3
horrida 46-4
pycanthus 46-4
Sassa 46-4
Senegal 46-4
Seyal, var. Fistula 46-4
stenocarpa 46-4
Acalypha Indica 147
Achillea Millefolium 85
patrinica 85-2
setacea 85
Achillein 85-2
Acid Absynthic 88-2
Acet 112-2
Achillele 85-2
Aconit 179-3
Acrylic 165-3
Aescin 43-4
Aesculetinic 43-4
Angelic 84-2
Anemonic 1-2
Anemoninic 3-3
Behenic 23-3
Bitter of Hops 155-2
Brassic 23-3
Carbopyridenic 128-5

Acid Cathartic 46-3
Chelidonic 21-2
Chrysarobic 143-2
Chrysophanic 143-2
Cisso-Tannic 40-2
Cric 21-2, 56-2
Conic 68-4
Cornic 71-3
Cumaria 49-2
Equisetonic 179-3
Eruic 23-3
Eucnic 42-3
Euphorbic 149-2
Euphrasia-Tannic 115-2
Formic 153-2
Fraxitannic 137-3
Gallic 100-5
Gallotannic 36-3
Gaultheric 102-3
Gelsemian 130-3
Gelseminic 130-3
Glycollic 40-2
Helianthic 83-2
Helleboric 8-2
Hop Bitter 155-3
Humulo-Tannic 155-3
Hydramaric 49-2
Hyoscinic 126-3
Inulic 81-3
Juglandic 156-3
Lactucic 96-2
Lobelic 99-3
Lupulic 155-2
Lupulo-Tannic 155-3
Menispermo-Tannic 14-3
Menyanthic 129-2
Methylcrotonic 84-2
Myricin 160-4
Nicotinic 128-5
Nymphaea-Tannic 18-3
Oxyphenic 40-2
Para-sorobic 56-2
Parietonic 143-2
Phytolaccic 130-3
Picropodophyllinic 17-3
Pini-tannic 165-4
Pino-tannic 165-4
Podophyllinic 17-3

Acid Polygalic 45-3
Polygonic 141-3
Potasso-myronic 24-2
Propionic 112-2
Rhabarbaric 143-2
Rhamnotannic 41-3
Rheic 143-2
Rhoitannic 38-3
Robenic 50-2
Rumic 143-2
Salicic 27-3, 161-3
Salicylous 161-3
Sanguinarinic 22-2
Sarracenic 19-4
Sinapic 23-3
Sinapoleic 23-3
Sorbic 50-2
Succinic 88-2
Tanacetum tannic 166-2
Tannic 100-5
Tartaric 61-3
Thu-jetic 165-3
Tiglic 84-2
Toxicodendric 38-2
Trixybenzoic 100-5
Tropic 126-3
Valerianic 155-3
Veratic 176-4
Viburnic 75-2
Virgineic 45-3
Aconitifolius humilis 17
Aconitum cammarum 1-2
ferox 1-2
hyoctonum 1-2
napellus 1-2
Acid buttercups 6
Actaea alba 10
Americana, var. a 10
brachypetala, var. a 10
gyrostachya 11
monogyria 11
orthostachya 11
pachypoda 10
racemosa 11
spicata, var. alba 10
Adoxa Moschatellina 74-2
Aecidium Berberidis 15-2
Aegle Marmelos 33-2
Aesculetin 43-4
Aesculin 43-4
INDEX.

Ambrina ambrosioides 140
Ambrosia absinthifolia 82
Ambrosia artemisiifolia 82
elator 82
heterophylla 82
paniculata 82
trifida 82-2
American Arbor-vitae 165
Aspen 162
China root 175-4
Coffee-bean 53
Cowslips 7
Custard Apple 13
Hers Christopher 10
Hop-hornbeam 159
Indian hemp 133
Ipecac 132, 149
Ivy 40
Laurel 103
Mezereon 146
Nettle-tree 152
Nightshade 139
Pennyroyal 118
Poplar 162
Pulsatilla 1
Rosebay 100-2
Spikenard 69
White Hellebore 176
Valerian 170
Ammoniacum 62-2

Ampelopsis 40
hederacea 40
quinquefolia 40
Amygdalin 56-2
Amygdalus communis, var.
amara 54-2
Amygdalus communis, var.
dulcis 54-2
Amygdalus Persica 54-2
Amyris elemifolia 34
Anacardium 36-2
Anacardium occidentale 36-2
orientale 35 2
Anacyclus officinarum 78-4

Anagallis 108
Anagallis arvensis 108
Anagyris f vitala 46-4
Anamirta paniculata 14
Auapodium phylum Canadense 17
Anda-acu 147-3
Anda Gomessi 147-3
Andira vermifuga 46-2
Andromeda polifolia 100-2
Androsemum officinale 30
Anemone flavescens 1
Hepatica 2
Ludoviciana 1
nemorosa 1-2
Nuttaliana 1

Anemone patens, var. Nuttaliana 1
pratensis 1-2
Pulsatilla 1
Anemonin 1-2
Anemonol 3-3
Angelica 64
Angelicaldehyde 84-2
Angelica atropurpurea 64
nemorosa 62-3
Tree 33, 60-2
triquinata 64
Angustura vera 33-2
Anise 62-3
Anisomeles Malabarica 116-3
Annona Cherimolia 13-2
triloba 13

Anonaceae 13
Anona squamosa 13-2
Anonymos sempervirens 130
Anthein aneura 84

Anthemis nobilis 84
Anthoxanthum odoratum 49-2
Antiaris toxicaria 152-3
Anthrhum Linaria 111

Anthyllis Hermonniae 46-3
vulneraria 46-3

Aphrodascin 43-4
Aphiis tuberosa 46-5
Apium graveolens 62-2
Apoconeae 133-2
Apoconein 133-3
Apoceynin 133-3

Apoceynum androsemifolium 132
Apoceynum cannabinum 133
hypericifolium 133
pubescens 133
Sibericum 133

Apple of Peru 127
Sodom 125-2

AQUIFOIACEAE 106
Arabis Chinensis 23-2
ARACEAE 167-2
Arachis hypogea 46-5
Aralia Canadensis 70

ARALIACEAE 69
Aralia hispida 69-2
nudicaulis 69-2

Aralia quinquefolia 70

Aralia racemosa 69
spinosa 60-2
umbellifera 69-2

Aralin 69-3
Aralterin 69-3
Arbor vitae 165
Arbutin 100-4
Arbutose 100-4
Arbutus Unedo 100-2
Arbutus Uva-ursi 100
Archangelica atropurpurea 64
Arctium Lappa 92
Arctostaphylos officinalis 100
tomentosa 100-2
Uva-ursi 100
Arctuvia 100-5
Arcthusa bulbosa 170-2
Argemone 20
Mexicana 20
Argel 135-3
Argyræcin 43-4
Argyræa bracteata 123-2
Arinol sulpho-cyanate 23-3
Arisoma atrociniens 167
draconium 168
triphyllum 167
Aristolochia anguicida 138-2
biloba 138-2
bettiaca 138-2
bracteata 138-2
camphor 138-3
Aristolochiaceæ 138
Aristolochia clematidis 138-2
cymbiera 138-2
fragrantissima 138-3
grandiflora 138-3
hastata 138
hirsuta 138-3
Indica 138-2
longa 138-2
macroura 138-3
Milhomens 138-2
offcinalis 138
pistolochia 138-2
reticulata 138-2
rotunda 138-2
saggittata 138
semprevirens 138-3
Serpentina 138
Serpentaria, var. Bartunic 138
Siphon 138-3
tomentosa 138-3
triloba 138-2
Aristolochin 138-4
Arnica 78-4
montana 78-4
Aromatic dendoron elegans 12-2
Aromatic wintergreen 102
Arrebente Cavallos 125-2
Aristolochia Absinthium 88
Cina 78-4
Contra 78-4
heterophyllus 87
Indica 78-5
Indica Canadensis 87

INDEX.

Artemisia santonica 78-4
Artemisia vulgaris 87
Arthrobotryum scorpionis 46-3
Artocarpus h 152-2
Artocarpus incisa 152-2
integra 152-2
integrifolia 152-2
Arum Americanum 169
Arum triphyllum 167
Arum dracontium 168
dracunculus 167-2
Italicum 167-2
maculatum 167-2
Asadulcis 62-3
Asoxetida 62-3
Thibetan 62-2
Tsa Grea officinalis 175-2
Asarabacca 138-2
Asarum Canadense 138-2
Europeum 138-2
Asclepiadaceæ 135
Asclepias coruni 134
Syracca 134
Asclepias tuberosa 135
Asclepione 134-3
Ash, American White 137
Asimina campanuliflora 13
Asimina triloba 13
Asparagus 50-2
Asparagus acutifolius 175-3
offcinalis 175-3
Asperula odorata 49-2
Asthma weed 99
Astragalus guminifer 46-4
Menziesii 46-2
Astrantia major 62-3
Acantharia planataginifolia 89-2
Athamanta 62-2
Athroscus Cerefolium 62-2
sylvestris 62-2
vulgaris 62-2
Atriplex angustifolia 140-2
hortensis 140-2
Atropa-atropine 127-3
Belladonna 125-2
mandragora 125-2
Atropine 127-3
Aureliana Canadensis 70
Austrian Turpentine 163-2
Avacado pear 145-2
Aya pana 78-2
Azalea pontica 100-2

Babouny 78-5
Bael 33-2
Balm 116-2
Balmony 113
Balsamodendron Africanum 62-3

Balsamodendron mukul 62-3
Balsam of Peru 46-3
Tolu 46-3
Balsams 163-2
Balsamum Hungaricum 163-2
Banberry (white) 10
Banyan tree 152-2
Baphia nitida 46-6
Baptisia 52
tinctoria 52
Barba de Boi 46-2
Barbados Aloes 175-3
Barberea praeceps 23-2
Barbarian Sandarach 163-2
Barbarea vulgaris 23-2
Barberry 15
Bardana major 92
Bardiera diversifolia 45-2
Barosma Betulina 33-2
crunculata 33-2
serratifolia 33-2
Bastard Dittany 33-2
Ipecac 74
Wormwood 82
Batatas edulis 123-2
paniculata 123-2
Bat weed 90
Bayberry 160
Bedellium 62-3
African 62-3
Indian 62-3
Bean 51
Tree 109
Bearberry 100
Bear's Grape 100
Beaver poison 67
Tree 12
Wood 12, 152
Beech nut 158-2
Wheat 142
Bees' Wax 160-3
Beet 140-2
Belladonna 125-2
Belleisle Cress 23-2
Bellis perennis 78-4
Bengal Quince 33-2
Benjamin bush 145
Benthamidia florad 71
Benzoïn 145
odoriferum 145
Berberia sulphate 145-2
Berberidaeæ 15
Berberin 15-2
Berberinum 9-2
Berberis 15
Canadensis 15-2
demetorum 15
vulgaris 15
vulgaris, var. Canadensis 15
INDEX

Buckwheat 142
Buck Yam 174-2
Bugbane 11
Bugleweed 117
Bulbous Buttercups 5
Crowfoot 5
Bur-clover 47-5
Burdock 92
Burgundy Pitch 163-2
Burnet Saxifrage 62-2
Burning Bush 42
Burr Flower 122
Bursera Pastoris 25
Burwort 6
Bush Honeysuckle 74-2
Buta frondosa 46-3
Butter-and-Eggs 111
Butter-flower 5
Butterfly-weed 135
Butternut 156
Butter-weed 80
Button Snakeroot 62
Button-bush 76
Button-wood 76
Buxus sempervirens 147-2
C

Caa-apia 152-2
Caepa 152-2
Cabbage 23-2
tree 46-2
Cacao Butter 160-3
Cachrys odontalgica 62-2
Cactus grandiflorus 61-2
opuntia 61
Cade 163-2
Calespinia Bonducella 46-3
Brasilienst 46-6
echinata 46-6
Nuga 46-3
Sappan 46-6
Cainca 76-2
Calabar Bean 46-2
Calabash tree 125-2
Caladium esculentum 167-2
segunum 167-2
Calamus Draco 46-3
Calatropis gigantea 135-2
Calcoloria pinnata 110-2
trifida 110-2
Calcium bimalate 36-4
glycollate 40-2
Calendula officinalis 78-4
Calico bush 103
Calisaya bark 76
Callistachya Virginica 114
Callistria quadrivalvis 163-2
Calochortus elegans 175-3
Caltha 7
INDEX.

Calyx a*alba 157

Carya oliviformis 156-2
- squamosa 157
- sulcata 156-2
- tomentosa 156-2
- tomentosa, var. maxima 156-2

Caryophyllaceae 31

Cascarilla 147-2
- Mexican 147-2

Casein, vegetable 51-2
- Cashew nut 36-2
- Cassava 147-2

Cassia acutifolia 46-2
- angustifolia 46-3
- Buds 145
- fistula 46-3
- lanceolata 46-2

Castalia pudica 18

Castanea edulis 158
- favina 43
- pumila 158-2

Castanea vesca 158
- vesca, var. Americana 158

Castor wood 12

Catalpa 109
- bignonioides 109
- cordifolia 109
- syringaeifolia 109

Cataputia minor 150

Catch-fly 132

Catechu 46-3

Cat Foot 89

Catha edulis 42-2

Cathartica 43-1

Catmint 116-2

Catnip 116-2

Caturus spiceiflorus 147-3

Cauliflower 23-2

Caulophyllin 16-2

Caulophyllum 16
- thalietroides 16

Cayenne Pepper 125-2

Ceanothus Americanus 41-2
- azurea 41-2
- discolor 41-2

Cebadilla 175-2

Cerocopa bellata 152-2

Cedar (Red) 166

Cedren 166-2

Camphora officinarum 145

Camwood 46-6

Canada Balsam 163-2
- Fleabane 80
- Pitch 164-2

Canadian hemp 133
- Moonseed 14

Cancer-root 139
- weed 94

Cancha lagua 129-2

Candytuft 23-2

Cannabina 154-4

Cannabine 154-4

Cannabin 154-4

Cannabine 154-4

Cannabinum 154-4

Cannabis 154
- Americana 154-3
- Indica 154
- sativa 154

Caoutchouc 152-2

Demerara 147-3

Surinam 147-3

Cape Aloe 175-3

Iitch bulb 175-3

Caper Spurge 150

Caprifoliaceae 74

Capsella Bursa Pastoris 25

Capsicum annuum 125-2
- fastigiata 125-2
- frutescens 125-2

Caraway 62-2

Cardamine pratensis 23-2

Cardinal Flower 97

Carduus Benedictus 78-4

Carolina Hippo 149

Ipexac 149

Pink Root 131

Carony bark 33-2

Carpathian Balsam 163-2

Carpenter’s Square 112

Carpinus Ostrya 159

Ostrya-Americana 159

Carrambo Wax 160-3

Carrot 62-3
- weed 82

Carum Ajowan 62-2

Carvi 62-2

Carya alba 157

Celery-leaved Crowfoot 3

Celtis 152
- Audibertianna 152
- australis 152-2
- occidentalis 152
- orientalis 152-2

Cementor of Friendship 154-2

Centaurea Tagana 78-4

Centaury, American 129-2

Chilian 129-2

European 129-2

Cephalanthus 76
- occidentalis 76

Ceratonia Siliqua 46-3

Cerbera taungehina 133-2

Thevetia 133-2

Cereus Bonplandii 61-2

Serpeninus 61-2

Ceroxylon andicola 160-3

Cermispina cathartica 41

Cestrum auriculatum 125-2

Hedimuda 125-2

macrophyllum 125-2

nocturnum 125-2

venenatum 125-2

Cevadina 176-3

Cevadine 176-3

Chamaelirin 177-2

Chamelirium Carolinianum 177

lateum 177

Chamelirium nobile 84

Chamomilla 78-4

Nobilis 84

Charas 154-2

Charlock 26

Checker-berry 102

Chelerythrin 21-2

Chelidonin 21-2

Chelidonium 21
- majus 21

Chelidoxanthin 21-2

Chelone alba 113-2

glabra 113
- lanceolata 113-2

obliqua 113

purpurea 113-2

rosea 113-2

Chenodendron tomentosum 14-2

Chenopodiaceae 140

Chenopodium album 140-2

ambrosioides 140-2

ambrosioides, var. anthelminticum 140

Chenopodium anthelminticum 140

baryosmon 140-2

Botrys 140-2
INDEX.

Chequerberry 77
Cheremyer 13-2
Cherry laurel 54-2
Chervil 62-2
Chestnut 158
Chian Turpentine 36-2
Chicory 93
Chickling Vetch 46-2
Children's bane 67
Chimaphila 104
corymbosa 104
maculata 104-2
umbellata 104
Chimaphilin 104-2
China braca e rubra 175-4
root (American) 175-4
(Javanese) 175-4
Chinese Ailanthus 35
Datura 125-2
Mustard 23-2
Sunnach 35
Tallow 160-3
Wax 160-3
Chinquapin 158-2
Chicocca racemosa 76-2
Chionanthus 136
Virginica 136
Chiretta, Indian 129-2
Chives 175-3
Chlorata perfoliata 129-2
Chocolate Butter 160-3
root 54
Choline 23-3, 155-2
Chongras 139
Chrysarobin 143-2
Chysorhammine 41-3
Churrus 154-2
Cicis disticha 147-2
Cicendia hyssopifolia 129-2
Cichorium 93
Intybus 93
sylvestre 93
Cicuta maculata 67
maculata, Lam. 68
Cicutanatia fatua 65
maculata 67
tennifolia 65
vulgaris 68
Cicuta virosa 62-2
vulgaris major 68
Cicutina 67
Cicutoxin 67
Cimicifuga 11
racemosa 11
serpenaria 11
Cimicifugin 11-2
Cina 78-4
Cineraria Canadensis 90
Cinchna Calisaya 76
condaminea, var. Chahuar-
guera 76-2
condaminea, var. Crispa
76-2
cordifolia 76
lanfifolia 76-2
micrantha 76-2
officinalis 76
succiruba 76
Cinnamomnum aromaticum 145
Camphora 145
pedunculatum 160-3
Zeylandicrum 145
Cinnamon 145
Santa Fe 145-2
Cinque 74
Cissampelos ovalifolia 14-2
Pareira 14-2
smilacina 14
Cissus hederacea 40
Cistaceae 28
Cistus 28
Canadensis 28
Creticus 28-2
Laduniferus 28-2
Leda 28-2
Laurifolius 28-2
ramuliflorum 28
Citron 33-2
Citrus acid 33-2
Aurantium 33-2
Bergamia 33-2
Linetta 33-2
Limonun 33-2
Medica 33-2
vulgaris 33-2
Cleavers 76-2
Clematis eretta 1-2
hirsutissima 1
Choria ternatea 46-3
Clothbur 92
Clover broom 52
red 47
sweet 49
white 48
winter 77
Club Moss 180
Cluytia collina 147-2
spinosa 147-2
Clypea Burmanni 14-2
Coccus acuminatus 14-2
Bakis 14-2
cinerascens 14-2
crispus 14-2
fibraulea 14-2
Indicus 14
plitphyllus 14-2
Conocloba uvifera 141-2
Cochlearia armoracia 23-2
officinalis 23-2
Cockle 31
Cock-up Hat 151
Cocoa (Brazilian) 43-2
Cocum 139
Coffee Arabica 76-2
Coffee 76-2
tree 53
Cohosh (black) 11
blue 16
white 10
Cukan 139
Colchicum autumnale 175-3
Columb root 172
seed 23-2
Colar-root 135, 172, 174, 177
Collidine 128-4
Collinsonia 119
Canadaensis 119
decussata 119
vulgaris 119
Collinsonia 119-2
Colophony 163-2
Colt's foot 7, 78-4
Cott's Tail 80
Columbian bark 76
Columbo 129-2
African 14-2
Colutea arborescens 46-3
Commia Cochinchinensis 147-3
Common celandine 21
Locust 50
Convolvuliae dentata 36-2
COMPOSITE 78-2
Comptonia asplenifolia 160-2
Concein 68-4
Conia 68-4
Conicina 68-4
CONIFERÆ 163
Conin 68-4
Conine 68-4
Conium 68
maculatum 68
major 68
Conot-weed 82
Continental weed 111
Contrayerva 152-2
Convallaria majalis 175-3
CONVOLVULACEÆ 123
Convulvis 123-2
Convululus 123
arvensis 123
Duartinus 123
Seamomma 123
scoparius 123-2
Convulsion root 105
Conydrine 68-4
INDEX.

Cranesbill 32
Crane Willow 76
Craspidea 57
Crateagus × oxyacantha 15-3
Cratera Marmelos 33-2
Crescentia Cujete 125-2
Creeping Buttercups 4
Checkerberry 77
Crowfoot 4
Wintergreen 102
Cresses 23-2
Criminal toxicarium 175-3
Crotalaria maritima 62-3
Crocus (prairie) 1
Crosswort 79, 129-2
Crotone antisphyiliticum 147-2
Draco 147-2
Eleuteria 147-2
Hibisciferous 147-2
Lacifierum 147-2
Oil 147-2
Organon 147-2
Pardiceps 147-2
Pavon 147-2
Pseudo-China 147-2
Sanguifolio 147-2
Suberosum 147-2
Tigillum 147-2
Tincitium 147-2
Crowberry 139
Crow-corn 172
Crowfoot 32
Crown Bark 76-2
Crow-poison 176
Cruciferæ 23
Cuckoo flower 23-2
Cuichunchulli 27-2
Culver's Physic 114
Culver's Root 114
Cumari anhydride 49-2
Cumari 49-2
Cumin 62-3
Cuminum Cyminum 62-3
Cundurango 135-2
Cumila mariana 116-3
Follii 118
Cupameni 147-2
Cupressus australis 163-3
Cupulifera 158
Cure-all 60
Curled Dock 143
Cursed Crowfoot 3
Custard-apple 13-2
(American) 13
Cutch 46-3
Cyclamen Europaeum 108
Cyclamin 108-2
Cyclametin 108-2

D

Cynanchum Arghel 135-3
erectum 135-3
extensum 135-3
ovatifolium 135-3
Cynapin 65-2
cypripedin 170-3
cypripedium lateum 170
cypripedium pubescens 170
Cytisine 53-2
Cytisus Laburnum 46-2, 53-2
scoparius 46-2

D

Dacydium taxifolium 163-2
demita extensa 135-3
Dahlia 81-2
daisy 78-4
damarra aurals 163-2
turpentine 163-2
Dandelion 95
daphne Indica 146
mezereon 146
daphnoidostaphylis fendleriana 100
Datiscin 81-2
datura alba 127-5
arborea 125-2
atropine 127-3
fastuosa 127-5
ferox 125-2
metel 125-2
meteloides 127-4
sanguinea 125-2
Stramonium 127
Daturine 127-3
daucus Carota 62-3
gingirum 62-3
gummy 62-3
deadly Nightshade 125
European 125-2
Dead Nettle 121
death of Man 67
deer-berry 77
delphinium Staphisagra 1-2
dens Leonis 95
derris pinnata 46-2
devis's Apple 127
bit 172, 177
bones 174
fig 20
scourge 30
yarn 174-2
dew berry 102
dewitt Snakeroot 94
dhak 46-2
diamorphanthus edulis 69-2
Dianthus plumaris 31-2
Dictamnus fraxinella 33-2
Diefenbachia seguina 167-2
D'errilla trifida 74-2
Digitalis ambigua 110-2
ferruginea 110-2
orientalis 110-2
purpurascens 110-2
purpurea 110-2
Dilatris Heritiera 171
tintoria 171
Dill 62-3, 62-4
Dionea muscipula 29
Dioscorea 174
aculeata 174-2
alata 174-2
bulbifera 174-2
Dioscoreaceae 174
Dioscorea daemona 174-2
Japonica 174-2
paniculata 174
quaternata 174
sativa 174-2
trifida 174-2
triphylla 174-2
villosa 174
villosa, var. glabra 174-3
Dioscorein 174-3
Dipteryx odorata 46-3, 49-2
Dirca palustris 146
Dita Bark 133-2
Ditch Stone-crop 57
Dittany 116-3
of Crete-crop 116-2
Dock 143, 144
Doctor's Gum 36-2
Doctor Tinker's Weed 74
Dog Poison 65
Dog's bane 132
Mercury 147-2
Parsley 65
Tooth Violet 175-3
Dog tree 71
Dogwood 71
Jamaica 46-2
Pond 76
Dolichos pruriens 46-2
Dombeya excelsa 163-2
turpentine 163-2
Dorema Ammonium 62-2
Dorstenia Brasiliensis 152-2
contrayerva 152-2
Houstonia 152-2
Double Spruce 163
Dracaena Draco 175-3
Dracodium Furtidum 169
Dragon-root 168
Dragon's Blood 147-2, 175-3
Guadeloupe 46-3
Drimia ciliaris 175-3
Drooping Star-wort 177
Drop Flower 94
Drosera 29
Droseraceae 29
Drosera rotundifolia 29
Duboisia Hopwoodii 125-2
myroporides 125-2
Duboisin 126-3
Duck's foot 17
Dulcamara 124
flexuosa 124
Dulcamarin 124-2
Dulcarin 124-2
Dutch Mice 46-5
Rush 179
Dwarf Elder 74-2
Nettle 153
Dyer's Baptisia 52
Broom 46
Dilatris 171
Green-weed 46
Dysentery bark 35
Eagle wood 46-4
Earthgall 176
Echinocactus Wislizeni 61-2
Echites suberecta 133-2
Egg Plant 124-2
Eleoedendron Roxburghii 42-2
Elder 75
Bush 75
European 74-2
Elecampane 81
camphor 81-2
Elecampin 81-2
Elephantopus scaber 78-4
Elk Bark 12
Emblema officinalis 147-2
Emetic-root 99
-weed 99
Emilia sonchifera 78-5
Endive 93
Endodeca Bartonii 138
Serpentaria 138
English Walnut 156-2
Enula 81
campana 81
Epipendrum auriculatum 170-2
bifidum 170-2
Epigaea 101
repens 101
Epilobium 59
angustissimum 59
ciliatum 59
leptosphyllum 59
linear 59
oliganthum 59
Epilobium paluste 59
palustre, var. albeescens 59
palustre, var. albiflorum 59
palustre, var. lineare 59
pubescens 59
rosmarinifolium 59
tenellum 59
squamatum 59
Equisetaceae 179
Equisetum 179
fluitabile 179-3
hymale 179
Erechthites 90
elongata 90
Hieracium 90
prealta 90
Ericaceae 100
Ericinol 100-5, 101-2
Ericolin 100-5
Erigeron 80
Canadense 80
heterophyllum 78-4, 80-2
paniculatus 80
Philadelphicum 78-4, 82
pusillus 80
strictum 80
Eringo, European 62-3
Eva de Cobra 78-4
Eryngium 62
aquaticum 62
campestre 62-3
maritimum 62-2
yuccifolium 62
Eryngo 62
Erythrea Centaurium 129-2
Chilensis 129-2
Erythronium Americanum 175-3
Dens-Canis 175-3
Indicum 175-3
Erythrophleum Guineense 46-2
Eschalote 175-3
Esopeon glaucum 94
Euchresta Horsefieldii 46-4
Euonymin 42-3
Enonymus atropurpureus 42
Caroliniensis 42
Europeus 42-2
tatifolius 42
Eupatorium 79-3
Eupatorium aromaticum 78-2
ayapa 78-2
cannabinum 78-2
connatum 79
fasiculacem 78-2
glutinosum 78-2
hyssopifolium 78-2
incarnatum 78-2
leucocephalus 78-2
INDEX.

Gratiola officinalis 110-2
Gravel plant 101
root 78, 119
weed 101
Gray bark 76-2
Great Angelica 64
Blue Lobelia 98
Lobelia 98
Scouring Rush 179
Green Dragon 168
Hellebore 8
Osier 72
wood 46
Grindelia 78-4
squarosa 78-4
Ground Pine 180-2
Grouse Berry 102
Ground Holly 102, 104
Laurel 101
Lily 175
Nut 46-5
Nut, Sioux 46-5
Raspberry 9
Groundsel 91
Guaco 138-2
Guao 36-2
Guaraná 43-2
Guatteria virgata 13-2
Guaza 154-2
Guilandica dioica 53
Guinea Pepper 125-2
Gulancha 14-2

Gum Ammoniacum 6-23
Animi 46-4
Arabic in general 46-4
Australian 46-4
brown Barbary 46-4
Cape 46-4
East India 46-4
Hemlock 104-2
Kordofan 46-4
Lac 152-2
Mastic 36-2
Guam Ohrenburgense 163-2
Gum, Morocco 46-4
red 46-4
Sassa 46-4
Senegal 46-4
Sennaar 46-4
Suakin 46-4
Talha 46-4
Gunjah 154-2
Gunnera macrocephala 69-2
scabra 69-2
Gymnocladus 53
Canadensis 53
Gypsophila struthium 31-2
Gyquiroiba 125-2
<table>
<thead>
<tr>
<th>HEL</th>
<th>INDEX.</th>
<th>IPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helonias pumila 177</td>
<td>Horehound 116-2</td>
<td>Imitation 130</td>
</tr>
<tr>
<td>viridis 175</td>
<td>Horse Balm 119</td>
<td>Ihapecanga 175-4</td>
</tr>
<tr>
<td>Hemidesmus Indicus 135-3</td>
<td>Chestnut 43</td>
<td>Ilex aquifolium 106-2</td>
</tr>
<tr>
<td>Hemlock 164</td>
<td>Horsefly-weed 52</td>
<td>Cassene 106-2</td>
</tr>
<tr>
<td>Dropwort 62-2</td>
<td>Horse Gentian 74</td>
<td>Dahoo 106-2</td>
</tr>
<tr>
<td>Fir 164</td>
<td>Ginseng 74</td>
<td>macouca 106-2</td>
</tr>
<tr>
<td>Gum 164-2</td>
<td>Mint 116-2</td>
<td>opoca 106-2</td>
</tr>
<tr>
<td>Pitch 164-2</td>
<td>radish 23-2</td>
<td>verticillata 106</td>
</tr>
<tr>
<td>Spruce 164</td>
<td>Sorrel 144</td>
<td>Illicium anisatum 12-2</td>
</tr>
<tr>
<td>Hemp 154</td>
<td>weed 80, 119</td>
<td>floridanum 12-2</td>
</tr>
<tr>
<td>African 175-3</td>
<td>Hotentot's Bread 174-2</td>
<td>Imperatoria lucida 64</td>
</tr>
<tr>
<td>American 133</td>
<td>Houseleek 57</td>
<td>ostruthium 62-2</td>
</tr>
<tr>
<td>American-Indian 133</td>
<td>Hovea Guianensis 147-3</td>
<td>Increaser of Pleasure 154-2</td>
</tr>
<tr>
<td>Canadian 133</td>
<td>Hovenia dulcis 41-2</td>
<td>Indian Apple 17</td>
</tr>
<tr>
<td>Indian 154</td>
<td>Hovenia dulcis var. Americana 2</td>
<td>Arrow-root 42</td>
</tr>
<tr>
<td>New Zealand 175-3</td>
<td>Hovenia dulcis var. obtusa 2</td>
<td>Balm 175</td>
</tr>
<tr>
<td>Henbane 126</td>
<td>Hemlock 164</td>
<td>Bark 12</td>
</tr>
<tr>
<td>Hepar sulphuris calcarea 60-2</td>
<td>Dropwort 62-2</td>
<td>Bean 109</td>
</tr>
<tr>
<td>Hepatica 4</td>
<td>Fir 164</td>
<td>Chocolate 54-2</td>
</tr>
<tr>
<td>Americana 2</td>
<td>Gum 164-2</td>
<td>Cucumber 175-2</td>
</tr>
<tr>
<td>triloba 2</td>
<td>Pitch 164-2</td>
<td>Datura 125-2</td>
</tr>
<tr>
<td>triloba, var. Americana 2</td>
<td>Spruce 164</td>
<td>Dry 9</td>
</tr>
<tr>
<td>triloba, var. obtusa 2</td>
<td>Hemp 154</td>
<td>Fig 61</td>
</tr>
<tr>
<td>Heracleum Sphondylum 62-2</td>
<td>African 175-3</td>
<td>Ginger 138-2</td>
</tr>
<tr>
<td>Herb-Bennet 68</td>
<td>American 133</td>
<td>Indian Hemp 154</td>
</tr>
<tr>
<td>Trinity 2</td>
<td>American-Indian 133</td>
<td>Indian Paint 22</td>
</tr>
<tr>
<td>Heritiera Gmelini 171</td>
<td>Canadian 133</td>
<td>Physic 148</td>
</tr>
<tr>
<td>Hernandia Guianensis 146-2</td>
<td>Indian-Indian 133</td>
<td>Pink 131</td>
</tr>
<tr>
<td>sonora 146-2</td>
<td>Canadian 133</td>
<td>Pipe 105</td>
</tr>
<tr>
<td>Herpestes Monniera 110-2</td>
<td>Indian 154</td>
<td>Plantain 107</td>
</tr>
<tr>
<td>Heteromeris Canadensis 28</td>
<td>American-Indian 133</td>
<td>Poke 176</td>
</tr>
<tr>
<td>Michanxii 28</td>
<td>Canadian 133</td>
<td>Posey 89</td>
</tr>
<tr>
<td>Heth 100</td>
<td>American-Indian 133</td>
<td>Rubber 152-2</td>
</tr>
<tr>
<td>Hickory 157</td>
<td>German-Indian 133</td>
<td>Rubber Tree 152-2</td>
</tr>
<tr>
<td>High Angelica 64</td>
<td>Indian 154</td>
<td>Shamrock 175</td>
</tr>
<tr>
<td>-bela 97</td>
<td>Tobacco 99</td>
<td>Turmeric 9</td>
</tr>
<tr>
<td>Cranberry 74-2</td>
<td>Turnip 167</td>
<td>Turnip 174-2</td>
</tr>
<tr>
<td>taper 110</td>
<td>Uncus 176</td>
<td>Uncus 176</td>
</tr>
<tr>
<td>Veronica 114</td>
<td>Yam 174-2</td>
<td>Ipecacuanha 174-2</td>
</tr>
<tr>
<td>Hill berry 102</td>
<td>Indigofera anil 46-2</td>
<td>argentea 46-2</td>
</tr>
<tr>
<td>Himeranthus uncinatus 125-2</td>
<td>Indigofera anil argentea 46-2</td>
<td>tinctoria 46-2</td>
</tr>
<tr>
<td>Hini 114</td>
<td>Indigo in general 46-2</td>
<td>weed 52</td>
</tr>
<tr>
<td>Hippobroma longifolia 97-2</td>
<td>Inocarpus edulis 146-2</td>
<td>weed 52</td>
</tr>
<tr>
<td>Hippomane Manzinella 147-2</td>
<td>Inosite 51-2, 95-3</td>
<td>Inocarpus edulis 146-2</td>
</tr>
<tr>
<td>Hog Apple 17</td>
<td>Inula 81</td>
<td>Ipecacuanha 27-2</td>
</tr>
<tr>
<td>Hogbean 126</td>
<td>Helium 81</td>
<td>Ipecacuanha 27-2</td>
</tr>
<tr>
<td>Hog's Bed 180</td>
<td>Inulin 81-2</td>
<td>microphyllum 27-2</td>
</tr>
<tr>
<td>Hog-weed 82</td>
<td>Inuloid 81-2</td>
<td>parviflorum 27-2</td>
</tr>
<tr>
<td>Holigarna longifolia 36-3</td>
<td>Inulol 81-2</td>
<td>Poaya 27-2</td>
</tr>
<tr>
<td>Holly 106-2</td>
<td>Ipecacuanha 175-4</td>
<td>Ipecacuanha 76-2</td>
</tr>
<tr>
<td>Rose 28</td>
<td>Iberis amara 23-2</td>
<td>Ipecacuanha 27-2</td>
</tr>
<tr>
<td>Holmes-weed 112</td>
<td>Ibeta wax 160-3</td>
<td>Ipecacuanha 27-2</td>
</tr>
<tr>
<td>Honey Bloom 132</td>
<td>Ice Plant 105</td>
<td>Ipecacuanha 27-2</td>
</tr>
<tr>
<td>Honduras Sarsaparilla 175-4</td>
<td>Ictodes Foetidus 169</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Ipecacuanha Spurge</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Ipecac (wild)</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Ipomoea Bons-nox</td>
<td>123-2</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td>123-2</td>
<td></td>
</tr>
<tr>
<td>tuberosa</td>
<td>123-2</td>
<td></td>
</tr>
<tr>
<td>Turpetbum</td>
<td>123-2</td>
<td></td>
</tr>
<tr>
<td>IRIDACEAE</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Iridin</td>
<td>173-2</td>
<td></td>
</tr>
<tr>
<td>Iris versicolor</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Iron wood</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Isatis tinctoria</td>
<td>46-2, 46-6</td>
<td></td>
</tr>
<tr>
<td>Isolusin</td>
<td>45-4</td>
<td></td>
</tr>
<tr>
<td>Ivy</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Ivy, American</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Jaborandi</td>
<td>33-2</td>
<td></td>
</tr>
<tr>
<td>Jacea</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>tricolor</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Jack Fruit</td>
<td>152-2</td>
<td></td>
</tr>
<tr>
<td>Jack-in-the-pulpit</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Jalap</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Jamaica Bitterwood</td>
<td>13-2</td>
<td></td>
</tr>
<tr>
<td>Bread nuts</td>
<td>152-2</td>
<td></td>
</tr>
<tr>
<td>Dogwood</td>
<td>46-2</td>
<td></td>
</tr>
<tr>
<td>Lancewood</td>
<td>13-2</td>
<td></td>
</tr>
<tr>
<td>Nutmeg</td>
<td>13-2</td>
<td></td>
</tr>
<tr>
<td>Sarsaparilla</td>
<td>175-3</td>
<td></td>
</tr>
<tr>
<td>Sweetwood</td>
<td>145-2</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>15-2</td>
<td></td>
</tr>
<tr>
<td>Jamestown-weed</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Japanese Yam</td>
<td>174-2</td>
<td></td>
</tr>
<tr>
<td>Japanese Wax</td>
<td>160-3</td>
<td></td>
</tr>
<tr>
<td>Japicanga</td>
<td>175-4</td>
<td></td>
</tr>
<tr>
<td>Jasminum officinale</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Jatahy</td>
<td>46-4</td>
<td></td>
</tr>
<tr>
<td>Jatropha Curaeas</td>
<td>14-2</td>
<td></td>
</tr>
<tr>
<td>glendulifera</td>
<td>147-3</td>
<td></td>
</tr>
<tr>
<td>glaucha</td>
<td>147-3</td>
<td></td>
</tr>
<tr>
<td>manihot</td>
<td>147-2</td>
<td></td>
</tr>
<tr>
<td>multifida</td>
<td>147-3</td>
<td></td>
</tr>
<tr>
<td>urens</td>
<td>147-2</td>
<td></td>
</tr>
<tr>
<td>Javanese China-root</td>
<td>175-4</td>
<td></td>
</tr>
<tr>
<td>Jersey Tea</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Jerusalem Artichoke</td>
<td>78-5</td>
<td></td>
</tr>
<tr>
<td>Cherry</td>
<td>125-2</td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td>140-2</td>
<td></td>
</tr>
<tr>
<td>Jervia</td>
<td>175-4</td>
<td></td>
</tr>
<tr>
<td>Jew-bush</td>
<td>147-3</td>
<td></td>
</tr>
<tr>
<td>Jimson-weed</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Jin-chen</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Joe-Pye-weed</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Johannisbrot</td>
<td>46-5</td>
<td></td>
</tr>
<tr>
<td>Jointed Charlock</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Jopin-weed</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>JUGLANDACEAE</td>
<td>156-2</td>
<td></td>
</tr>
<tr>
<td>Juglandin</td>
<td>156-3</td>
<td></td>
</tr>
<tr>
<td>Juglans alba</td>
<td>156-2</td>
<td></td>
</tr>
<tr>
<td>Juglans cinerea</td>
<td>156-2</td>
<td></td>
</tr>
<tr>
<td>Juglans regia</td>
<td>156-2</td>
<td></td>
</tr>
<tr>
<td>Juniperus occidentalis</td>
<td>165-2</td>
<td></td>
</tr>
<tr>
<td>Juniperus oxycedrus</td>
<td>163-2</td>
<td></td>
</tr>
<tr>
<td>Juniperus Virginiana</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Juniperus Virginiana</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Kale, Sea</td>
<td>23-2</td>
<td></td>
</tr>
<tr>
<td>Kalmia</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Kamass Root</td>
<td>175-3</td>
<td></td>
</tr>
<tr>
<td>Karaka</td>
<td>36-2</td>
<td></td>
</tr>
<tr>
<td>Kangaroo Coffee-tree</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Kidney Bean</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>King's Cups</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Kinnikinnick</td>
<td>36-3</td>
<td></td>
</tr>
<tr>
<td>Kino, African</td>
<td>46-3</td>
<td></td>
</tr>
<tr>
<td>Kirkia</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Joc-Pye-weed</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Johannisbrod</td>
<td>147-3</td>
<td></td>
</tr>
<tr>
<td>Julesin</td>
<td>45-4</td>
<td></td>
</tr>
<tr>
<td>Jute</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Jujube</td>
<td>41-2</td>
<td></td>
</tr>
<tr>
<td>Juquerioba</td>
<td>125-2</td>
<td></td>
</tr>
<tr>
<td>Juniperus</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Juniperus</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Knapweed</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Kopie Tree</td>
<td>142-2</td>
<td></td>
</tr>
<tr>
<td>Kopsso</td>
<td>54-2</td>
<td></td>
</tr>
<tr>
<td>Koya</td>
<td>160-3</td>
<td></td>
</tr>
<tr>
<td>Krameria argentea</td>
<td>45-2</td>
<td></td>
</tr>
<tr>
<td>Krameria cistoida</td>
<td>45-2</td>
<td></td>
</tr>
<tr>
<td>Krameria incisa</td>
<td>45-2</td>
<td></td>
</tr>
<tr>
<td>Krameria multifida</td>
<td>45-2</td>
<td></td>
</tr>
<tr>
<td>Krameria triandra</td>
<td>45-2</td>
<td></td>
</tr>
<tr>
<td>Labiateae</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Labrador Tea</td>
<td>100-2</td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

LOBELIAE 97

LOBelia coccinea 97
cerula 98

LOBelacia 99-3
LOBelia glandulosa 98
great 98

LOBelia inflata 99
LOBelianan 99-3
LOBelia reflexa 98

LOBelia syphilitica 98
LOBeliate of Lobelia 99-3
LOBelia 99-3

LOGwood 46-2
LOselseuria procumbens 100-2
Lombardy Poplar 161-2

LONGan 43-2

Lomeca Marilandica 131

Xylosteum 74-2

Lopez Root 33-2
Lote 41-2

Berry-tree 152-2

Lotus 41-2

Lavage 62-3

Lupulin 155-2

Lupulina 155-2

Lupuline 155-3

Lupulite 155-2

Lupulus 155

Lus-a-chrasis 71-2

Lutidine 128-4

Lychis Githago 31

Lyctium umbrosum 125-3

Lycopersicum esculentum 125-2

LYCOPODIACE.E 180

Lycopodine 180-3

Lycopodine 180-3

Lycopodium 180
catharticum 180-2
ceratum 180-2
clavatum 180
complanatum 180-3
hygrometricum 180-2
integrifolium 180
plegnaria 180-2
Selago 180-2
tristachyum 180

LYCOPUS 117

macrophyllus 117

pamillus 117

uniflorus 117

Virginicus 117

Virginicus, var. macrophyllus 117

Virginicus, var. pauciflorus 117

LYSIPHE Berberides 15-2

Macrotis discolor 44

Macrotis 11-2

MAY

Macrothrysum 11

racemosa 11

serpentaria 11

Mad Apple 127

Madeira Nut 156-2

Madder 76-2

Mad-Dog Skull Cap 120

weed 120

Mad weed 120

Magnesium 179-3

MAGNOLIAE 12

Magnolia fragrans 12

Magnolia, a glauca 12

Maggiolins 12-3

Mallolus philippensis 147-2

Mandake 17, 125-2

Mangifera Indica 56-3

Manglica glauca 12-2

Mango 36-3

Manna 136-2

Biblical 49-5

of Briancon 163-2

Calabrian 136-2

Egyptian 49-5

Mannas in general 136-2

Mannit 137-3

Mannite 137-2

Man's Health 70

Manzanillo 147-2

Maple Vine 14

Marcy 151

Mare Bebs 7

Blobs 7

Marjoram 116-2

Marking Nut 36-2

Marsdenia erecta 135-3

Marsh Clover 129

Crowfoot 3

Epilobium 59

Marigold 7

Parsley 62-3

Tea 100-2

Trefoil 129

Marubium vulgare 116-2

Maruta cotula 78-4

Maryland Pink Root 131

Masterwort 62-2, 64

Mastic Tree 36-2

Mata 78-2

Mataperro 135-2

Mat 106

Matico 78-2

Matricaria Chamomilla 78-4

Matrimony Vine 125-3

May Apple 17

Flower 101
INDEX.

Mugwort 87
Mulberries 152-2
Mullein 110
Muscaec cecropioides 152-2
Muscaec clavatus 180
terrestrial 180-2
Musquash Root 67
Mustard, Chinese 23-2
white 23
yellow 23
Myrcia Urugoga 106-2
Myrica 160
Myricaceae 160
Myrica cerifera 160
cordifolia 160-2
Gale 160-2
sapida 160-2
Wax 160-2
Myristica fragrans 160-4
Myrosin 23-3

Nabalus 94
albus, var. Serpentinus 94
Fraseri 94
glaucus 94
trilobatus 94
Serpentinus 94
Narrow Dock 143
leaved Willow Herb 59
Narthex Asafoetida 62-2
Nasturtium officinale 23-2
Nectandra cinnamomoides 145-2
cymbarum 145-2
puchury-minor 145-2
Rodice 145-2
Nepenthes 125-2
Nepeta Cataria 116-2
Nephelium Litchi 43-2
Longan 43-2
Nerium Oleander 133-2
tinctorum 46-2
Nerve-root 170
Nest Plant 105
Nettle Tree 152
New England Boxwood 71
New Jersey Tea 41-2
New Zealand Hemp 175-3
Nicotia 128-3
Nicotiana attenuata 128-2
Bigelovii 128-2
Chinesis 128-2
Clevelandi 128-2
Fructicosa 128-2
lanceolata 128-2
macrophylla 128
nana 128-2
Falmeri 128-2
Persica 128-2

Meeereon 146
American 146
Microsperma Berberidis 15-2
Mikania Guaco 78-4
officinalis 78-4
opifera 78-4
Milawapamule 73
Milk Parsley 85
Purslane 147
Milkweed 132
common 134
wandering 148
Milkwort 45
Millefolium 85
Mimosa fragifolia 46-4
humilis 46-2
Unguis 46-4
Mitchella 77
repens 77
undulata 77
Moccasin flower 170
Mocker Nut 156-2
Mock Pennyroyal 118
Monarda punctata 116-2
Monesin 43-4
Monetia Barleroides 106-2
Moninin 43-4
Monk's Rhubarb 144-2
Moninia petocarpa 45-2
polystachya 45-2
salicifolia 45-2
Monodora myristica 13-2
Monotropa 105
Morisoni 105
Morrisoniana 105
uniflora 105
Moonseed 14
Moos Grass 29
Moosewood 146
Morning Glory 123-2
Morocco Sandarach 163-2
Morphia 20-2
Morus alba 152-2
nigra 152-2
rubra 152-2
tinctoria 152-3
Moschatel 74-2
Moss Beauty 101
Motherwort 116-3
Mountain Ash 56
Box 100
Flax 45
Laurel 103
Pink 101
Tea 102
Moxa 87
Mucilage 107-2
Mucuna pruriens 46-2

May Flower (prairie) 1
Maytenal 27-2
Maytenus Chilensis 42-2
Mayweed 78-4
Meadow Bloom 6
Bouts 7
Cabbage 169
Garlic 175-3
Lily 178
Parsnip 66
Poke 176
Saffron 175-3
Medicago Virginica 175-2
Medicago lupulina 46-5
Melanthaceae 175-2
Melanthium densum 177
dioicum 177
muscatotoxicum 175-2
Virginicum 175-2
Melicaea biunigis 43-2
Mellilot 49
Mellilotus 49
alba 49
lecantha 49
officinalis 49
officinalis, var. alba 49
Melissa officinalis 116-2
pulegioides 118
Memory Root 167
Menispermacae 14
Menispermine 14-3
Menispernum 14
angulatum 14
Canadense 14
similacinum 14
Menispine 14-3
Mentha hircina 116
fawiana 116-4
officinalis 116
paustris 116
Mentha piperita 116
piperita, var. officinalis
pulegium 116-2
viridi-aquatica 116
Viridis 116-2
Menthae 116-4
Menthol 116-4
Mentha 116
Mentha 116
Menyanthes 129
trifoliata 129
verna 129
Menyanthol 129-3
Menyanthin 81-2, 129-3
Mecurialis perennis 147-2
Mercury 38
Mesquite 46-5
Methylcone 68-4
Methyl-salicylate 102-3
Mexican Poppy 20
Tea 140-2

N

NIC
INDEX.

Oil of Bergamot 33-2
Birch 102-2
Cannabis 154-4
Cedar 166-2
Conium 68-4
Cornus 71-3
Cumin 67
Erechthites 90
Erigeron 80-2
Fraxinus 137-3
Gaultheria 102-3
Geum 54-2
Hedeoma 118-2
Hemlock 164-2
Hemp Seed 154-3
Humulus 116-4
Hypericum 123-2
Lappula 92-2
Lobelia 99-3
Lycopodium 180-3
Narcissus 128-5
Nicotiana 128-5
Nepeta 120-2
Night-Blooming Cereus 61-2
Nightshade 125-2
Nightshade 125-2 (woody) 124
Night Willow-herb 60
Nimfa quassioidea 35-2
Nipple Nightshade 125-2
Noah’s Ark 170
None-so-pretty 89
Northern Vine 155
Noosebled 85
Nucin 150-3
Nutmeg (Jamaica) 13-2
Nymphæa 18
alba 18
alba (Eu.) 18-2
lotus 18-2
odorata 18
Nymphæo-phlobaphene 18-3
O
Ocymum Basilicum 116-2
canum 116-2
crispus 116-3
sanctum 116-3
suave 116-3
viride 116-3
Oenanthe crocata 62-2
Onothera 60
biennis 60
garroides 60
parviflora 60
Onothera 60-2
Ohio Buckeye 44
Oil Nut 46-5, 156
Oil of Achillea 85-2
Æsculus 43-4
Argemone 20-3
Anemone 1-2
Anthemis 84-2

PAR

Opuntia 61
Camanchico 61-2
Engelmani 61-2
Humifusa 61
Humifusus 61
intermedia 61
Italica 61
maritima 61
Occidentalis 61-2
Rafinesquii 61-2
tavialis 61
Orahe 140-2
Orange Apocynum 135
Milkweed 135
Root 9
Swallow-wort 135
Orchidaceæ 170
Orchidocarpum arizienum 13
Oreodaphne Califormica 145-2
cupularis 145-2
eccitata 145-2
fotens 145-2
opifera 145-2
Origanum Dictamnus 116-2
Marjorana 116-2
vulgare 116-2
Ormenis nobilis 84
Ornacarpum sennoides 46-3
Opinie 57
Orthosporum anthelminticum 140
Ostrya 159
Virginica 159
Ova-ova 105
Oxalis stricta 32-2
Ox balm 119
Oxyacanthin 15-3
Oxyacanthin 15-4
Oxyria diggina 141-2

P

Pacific Turpentine 163-2
Piperinæ Virginica 114
Ptelea officinalis 1-2
Pale Bark 76
Palm Wax 160-3
Palsy-wort 7
Panacon 70
Panacon 70-2
Panacon 70-2
Panax Americana 70
Panax Americanæ 70
quefleulism 70
Pancratium 175-3
Pants 27
Papaveraceæ 20
Papaver Rhoeas 20-2
somniferum 20-2
Papaw 13
Pappoose-root 16
Paraconia 68-4
INDEX.

Paraguay Tea 106
Pardeira Brava 14-2
Parietaria erecta 152-3
diffusa 152-3
officinalis 152-3
Parietin 143-2
Parsley 62-2
Parship 63
Partridge Berry 77, 102
Parvoline 128-4
Pasque-flower 1
Paterina tinctoria 146-2
Pastinaca 63
Oenanthe 62-3
sativa 63
Paulina australis 43-2
currara 43-2
cutanea 43-2
pinnata 43-2
sorbillis 43-2
Paul’s Betony 117
Pauson 22
Pavia alba 44
glabra 44
macrostachya 44
pallida 44
Paviin 43-4
Pawpaw 13
Pea 46-5
Peanut 46-5
Peca 17
Pecan Nut 156-2
Pectin 27-3
Pedilanthus tithyroides 147-3
Pellitory 33
German 78-4
Spanish 78-4
Pencil Cedar 166
Pennyroyal 116-2
American 118
Pennsylvania Dogwood 72
Pennywort 62-2
Penthorum 57
sedoides 57
Peppermint 116
Camphor 116-4
Chinese 116-4
Pepperwort 23-2
New Zealand 23-2
Perennial Worm Grass 131
Periplaca Graca 135-3
Periwinkle 133-2
Persia gratissima 145-2
Persian Lilac 136-2
Peruvian Barks 76
Petroselinum sativum 62-2
Pettymorrel 69
Ponedanum ambiguum 62-4
graveolens 62-3

Phasedanum officinale 62-3
Oroselnum 62-2
palustr 62-3
Phaseolin 51-2
Phaseolus 51
radiatus 46-4
trilobi 46-3
vulgaris 51
Phellandrum aquaticum 62-2
Phleum pratense 47-2
Philobaphine 155-3
Purpureum tenax 175-3
Phyllanthus Nigrum 147-2
urinaria 147-2
virgus 147-2
Phylylla latifolia 136-2
Physalis Alkekengi 125-2
flexuosus 125-2
Physic Nut 147-2
Phyostigma venenosum 46-2
Phytolacca 139
Abyssinica 139-2
American 139
Phytolaccaeeae 139
Phytolacca decandra 139
dioida 139-2
dodecandra 139-2
icosandra 139-2
octandra 139-2
vulgaris 139
Phytolacine 139-3
Picconile 128-4
Pichurin Bean 145-2
Pickaway 34
Pierana excelsa 35-2
Picroglossion 124-2
Picropodophyllin 17-3
Pigeon Berry 139
Weed 69
Pilea muscosa 152-3
Pilocarpus pennatulifolius 33-2
Pimpernel 108
Pimpinella Anisum 62-3
dissecta 62-3
magna 62-3
Saxifraga 62-2
Pinckneya pubens 76-2
Pinipicrin 165-3
Pink Root 131
Pinus Abies 163-2
Abies Caucadensis 164
australis 163-2
balsamea 163-2
Caucadensis 164
Cembra 163-2
Fraseri 163-2
Lambertiana 163-2
Laricio 163-2
Larix 163-2

Pinus Ledebourii 163-2
maritima 163-2
nigra 163
palustris 163-2
Picea 163-2
pinaster 163-2
pinea 163-2
Pumilio 163-2
rubra 163
dulcestris 163-2
Taeda 163-2
Pipe Plant 105
Piper Aethiopicum 13-2
Pipmentol 116-4
Pipsissewa 104
Piqueria cinerea 78-4
Pirus 56
acuparia 56
American 56
Pisciadia erythrina 46-2
Pissabed 95
Pistachio nuts 36-2
Pistacia Atlantica 36-2
Lentiscus 36-2
oleosa 36-2
terebinthus 36-2
vera 36-2
Pisum sativum 46-5
Pitcher Plant 19
Pitches 163-2
Pituri 125-2
Pix Arida 163-2
Burgundica 163-2
Canadensis 164-2
Liquida 163-2
Nigra 163-2
Plantaginaceae 107
Plantago 107
arenaria 107-2
Cynops 107-2
decumbens 107
Thesago 107
lanceolata 107
major 107
Pysillum 107-2
culinaris 107

Plantain 107
Plantula Marilandica 45
Plectranthus fruticosus 116-2
Pleurisy-root 135
Poaya da Praia 27-2
da Campo 27-2
Pocan 139
Podalyria tinctoria 52
Podophyllum 17-3
Podophyllumquectin 17-3
Podophyllotoxin 17-3
Podophyllum 17
hexandrum 17-2
INDEX.

POD

Podophyllum peltatum 17
Podoscidium Californicum 62-4
Poinciana pulcherrima 46-4
Poison Ash 37, 136
Dogwood 37
Elder 37
Hemlock 68
Ivy 38
Oak 38
Sumach 37
Tobacco 126
Tree 37
Vine 38
Wood 37
Poke Root 139
Weed 139
Pole Bean 51
Polecat weed 169
Polygala amara 45-2
Polygalaceae 45
Polygala chamebuxus 45-2
crotalarioïdes 45-2
Psaya 45-2
rubella 45-2
sanguinea 45-2
Senega 45
venenosa 45-2
Virginiana 45
vulgaris 45-2
Polygalin 45-4
Polygonaceae 141
Polygono 141
Acre 141
amphibium 141-2
ariculare 141-2
barbatum 141-2
Bistorta 141-2
Fagopyrum 142
hydropiper, Linn. 141-2
Bistorta 141-2
Podophyloidaceae 21
Polygonum 141
Podophylin 162
balsamifera 161-2
dilatata 161-2
var. nigra 161-2
tremuloides 162
Porcelia trioloba 13
Porphyroxin 22-2
Potassium Chloride 88-2
nitrates 60-2, 126-4
Potato 124-2, 125-2
Potthos 169
Pitida 169
Prairie Flower 1
potato 46-5
Prangos fabularia 62-3
Prayer bead 46-6
Prenanthes alba, var. Serpen-94
glaea 94
Serpenaria 94
Prickly Ash 33
Pear 61
Poppy 20
Yam 174-2
Pride-weed 80
Primrose, evening 60
Tree 60
Primulaceae 108
Primula officinalis 108
Prince’s Pine 104
Prinos 106
confertus 105
Gronovii 106
verticillatus 106
Privet 136-2
Prosopsis juliflora 46-5
Prunus laurocerasus 54-2
Persica 54-2
Virginiana 54-2
Psoralea corylifolia 46-3
esculenta 46-5
Pseudacacia odorata 50
Pseudo-Jervia 176-3
Ptelea 34
 trifoliate 34
 vitiæfolia 34
Pterocarpus Draco 46-3
eriancæ 46-3
mardpusium 46-3
santalina 46-6
Puccina 22-2
Puccoon 22
Pueraria tuberosa 46-3
Puff Ball 95
Puka-puka 78-4
Puke-weed 99
Pulicaria dysenterica 78-4
Pulsatilla Nuttalliana 1
patens 1
patens, var. *Wolfgangiana* 1
Puppet Root 176
Purging Buckthorn 41
Purple Avens 54
Boneset 78
Hemp-weed 78
Purple Thoroughwort 78
Trillium 175
Willow 161
Pyrethrum Parnethium 78-4
Pyridine 128-4
Pyrocathechin 40-2
Pyrola Fructicans 104
umbellata 104
Pyrolem Oxycedri 163-2
Pyrus 56
Pyrus, see *Pirus* 56
Quassia Bark 35
Cups 35-2
Jamaica 35-2
Queen of the Meadow 78
Queen’s Delight 151
Root 151
Quercitrin 43-4
Quillagin 43-4
Quinhydroine 100-5
Quintel 114
Raccoon Berry 17
Radish 26
Rag-weed 82
Ramus novelus 124
Ransted 111
Ranunculaceae 1
Ranunculus acris 6
Ranunculus bulbosus 5
Clontioni 4
intermedius 4
lanuginosus, var. 7, 4
prat. erect. acris 6
prostratus 4
Ranunculus repens 4
Ranunculus sceleratus 3
tomentosus 4
Rape Seed 23-2
Raphanus 26
Raphanistrum 26
Rapuntium infatum 99
Ratanhia, brown 45-2
Fara 45-2
red 45-2
Peruvian 45-2
violet 45-2
Rattle-bush 52
root 11
Rattlesnake Master 62
root 11, 94, 175
Rattle-weed 11
Rebenta Cavalllos 97-2
Red Bark 76
Red-berried Trailing Arbutus 100
Red Berry	70, 100, 102
Cedar	166
Chickweed	108
Clover	47
Lobelia	97
Mustard	24
Osier Dogwood	71-2
Pimpernel	108
Puccoon	22
River Snake-root	138-2
Root	22, 29, 171
Saunders	46-6
Willow	161
Resina Draconis	46-3
Rhabarbarin	143-2
RHAMNACEÆ	41
Rhamnegenie	41-3
Rhammetine	41-3
Rhamnin	41-3
Rhamnocathartin	41-3
Rhamnus catharticus	41
Frangula	41-2
infectorius	41-2
solutius	41
Rhatany, Brown	45-2
Para	45-2
Peruvian	45-2
red	45-2
violet	45-2
Rhein	143-2
Rheumatism Root	174
Rheum capsicum	141
compactum	141-2
crassinervium	141
emodi	141
leucorrhizum	141
Moorcroftianum	141
officinale	141
palatum	141
raponticum	141
spiciflorum	141
undulatum	141
Webbianum	141
Rhododendron chrysanthemum	100-2
ferruginieum	100-2
maximum	100-2
ponticum	100-2
Rhodora scaparum	123-2
Rhubarb, Chinese	141
Dolenkara	141
English	141
Russian	141
Thibetan	141
West Indian	141
Rhus aromatica	39
Buchi-amela	36-2
Canadensis	39
Carolinaum	36
Rhus coriaria	36
cotinus	36
elegans	36
Rhus glabra	36
humile	38
favanica	36-2
metopium	36-2
pumila	36-2
radicans	38-2
radicans, var. toxicodendron	38
scandens	38-2
Sinense	36-2
suaveolens	39
succedanea	160-3
succedaneum	36-2
toxicarium	38
Rhus Toxicodendron	38
Toxicodendron, var. Quercifolium	38
Toxicodendron, var. radicans	38-2
Toxicodendron, var. a vulgare	38-2
Rhus venenata	37
vermis	36, 37
verrucosa	38
Virginicum	36
Ribes rigens	109-2
Rib Grass	107
Rib-wort	107
Rich-leaf	119
Rich-weed	11, 119
Robinia	50
amara	46-4
flava	46-4
Maculata	46-4
pseud-acacia	50
Robinin	50-2
Rocambole	175-3
Rock Rose	28
Roman Chamomile	84
Wormwood	82
Rope-bark	146
Rorellia rotundifolia	29
ROSACEÆ	54
Rosebay (American)	100-2
Yellow	100-2
Rose Campion	31
Laurel	103
Rosmarinus officinalis	116-2
Rosemary	116-2
Rosin	163-2
Roundheart	66
Round-leaved Cornel	72
Dogwood	72
Laurel	103
Sorrel	141-2
Round-lobed Hepatica	2
SALICACEÆ	76
Rubia tinctoria	76-2
Rubidine	128-4
Rubi-Jervia	176-3
Rue	33-2
Rumex	143
acetosa	144
acetocella	144
alpinus	144-2
crispus	143
divaricatus	144
obtusifolius	144
patientia	144-2
scutans	144-2
Ruminic	143-2
RUTACEÆ	33
Ruta graveolens	33-2
Sabadilla	175-2
Sabbathia angularis	129-2
Sabina	163-3
Sabinea florida	46-4
Sacacomie	36-3
Sage	116-2
Salep	170-2
SALICACEÆ	161
Salicin	161-2
Salicornia annua	140-2
Salicylaldehyde	161-3
Salicylate of Methyl	102-3
Saligenin	161-3
Saliretin	161-3
Salix alba	161
Caprea	161-2
helix	161
Lambertiana	161
monandra	161
pentandra	161-2
Salix purpurea	161
Russelliana	161
Salsify	78-5
Salsodas	140-2
Salsola Kali	140-2
Salvia	140-2
Soda	140-2
tragus	140-2
Salt-rheum Weed	113
Saltwort	140-2
Sambucus officinalis	116-2
Sambucus Canadensis	75
ebulus	74-2
granca	75
humilis	75
nigra	74-2
nigra, Marsh	75
Samphire	62-3
Sandarach	163-2
Sandbox	147-3
INDEX.

Sanguinaria 22
Canadensis 22
minor 22
Sanguinarina 22-2
Santiolina fragrantissima 78-5
Sapindaceae 43
Sapindus saponaria 43-2
Sapinum acutum 147-3
Indicum 147-3
sylvaticum 151
Saponaria officinalis 31-2
Sapogenin 43-4
Saponin 16-2, 43-4
Sappan Wood 46-6
Saraca umbellata 125-3
Sarissa gibosa 19
Sarracenia 19
Sarraceniaceae 19
Sarracenia purpurea 19
Sarracenin 19-4
Sarsaparilla, Brazilian 175-4
Ceylon 135-3
country 135-3
false 69-2
Honduras 175-4
Jamaica 175-4
Texas 14
Vera Cruz 175-4
Yellow 14
Sassafras 145-2
officinalis 145-2
Orinoko 145-2
Satureja hortensis 116-2
Montana 116-2
Savanilla, Brazilian 45-2
Mexican 45-2
Saville Orange 33-2
Savin (red) 166
Savoyja 175-2
Scabish 60
Scabious 80
Scabwit 81
Scammony 123
Secamone Thunbergii 133-2
Scarlet Lobelia 97
Pimpernel 108
Schinus 36-2
areira 36-2
malle 36-2
Schmidelitca edulis 43-2
Schizonepeta officinalis 175-2
Scilla Indica 175-3
maritima 175-3
Scoparum 46-2
Scouring Rush 179
Screw-bean 46-5
Scrofula Plant 112
Scrophularia 112
aquatica 110-2
Scrophulariaceae 110
Scrophularia lanceolata 112
Marilandica 112
nodoso 112
nodoso var. Americana 112
Scrophularin 112-2
Scrophularosmin 112-2
Scrubby Rush 179
Scurry Grass 23-2, 24-2
Scutellaria 120
lateriflora 120
Scutellarine 120
Sea Holly 62-2
Kale 23-2
Seaside Grape 141-2
Semecoma enetica 135-2
Sedum acre 57
Telephium 57
Sela Wax 160-3
Semecarpus Anacardium 36-2
Sempervivum tectorum 57
Seneca Snakeroot 45
Senecin 91-2
Senecio 91
aureus 91
ciliatus 80
fastigiatus 91
gracilis 91
Hieracifolius 90
Senega 45
officinalis 45
Senegn 45-3
Seneka 45
Senna, Alexandrian 46-2
American 46-3
Bladder 46-3
Tinnivelly 46-3
Serpentaria 138
camphor 138-4
Serpentrty-root 138
Service Tree 56
Shag-bark Hickory 157
Shave Grass 179
Sheep Laurel 103
Shell-bark Hickory 157
Shell Flower 113
Shepherd’s Purse 25
Shrubby Trefoil 34
Shumake 36
Side-saddle Flower 19
Sidhee 154-2
Silene Virginica 31-2
Silicea 179-3
Silkweed 134
Silky Cornel 73
Silver Leaf 89
Simaba Cedron 35
Simaruba amara 35
Simarubaceae 35
Simaruba versicolor 35-2
Sinalbin 23-3
Sinapine 23-3
sulphate 23-3
Sinapis alba 23
arvensis 24-2
Chinenis 23-2
Sinapis nigra 24
Sinigrin 24-2
Sisson aureus 66
trifoliatum 66
Sium Douglaclis 67
latifolium 62-2
Skoke 139
Skull Cap 120
Skunk Bush 39
Cabbage 169
Weed 169
Slippery Elm 152-2
Small Hemlock 65
Magnolia 12
Smart-wood 141
Smilaceae 175-2
Smilax China 175-4
glauca 175-4
glycyphylla 175-4
lanceolata 175-4
medica 175-4
officinalis 175-3
Pseudo-China 175-4
syphilicata 175-4
Smooth Horse-chestnut 44
Sumac 36
Smyrnum acuminatum 66
aureum 66
luteum 66
Oliusatrum 62-3
Snagrel 138
Snake Head 113
Moss 180
Snake Root 131, 138
Brazilian 138-2
Colombian 138-3
Jamaica 138-3
Peruvian 138-3
Red River 138-2
Snakeroots, in general 138,
138-2
Snake-root, Texan 138-2
Virginia 138
Snake’s Milk 133, 148
Snake-weed 67, 138
Snapping Hazel-nut 58
Snowball 76
Snowberry 74-2
Snowdrop Tree 136
Snow-flower 136
Soapwort 31-2
Socotrine Aloes 175-3
INDEX.

Solanaceae 125
Solanum Bahamense 125-2
crenatum 125-2
crenato-dentatum 125
Dulcamara 124
inops 125
Jacquiri 125-2
lycopersicon 124-2
mammosum 125-2
melongena 124-2

Solanum nigrum 125
deraceum 125-2
paniculatum 125-2
pseudo-capsicum 125-2
pterocaule 125
pterycanthus 125-2
Rebenta 125-2
tuberosum 124-2, 125-3
tuberosum aggregans 125-2

Sonchus pallidus 96
Soplihi tinctoria 52
Sorbus 56-2
Sorbus avparia 56-2
acuparia, var. Americana 56
Americana 56
humifusa 56

Soulamea amara 45-2

Stachys Betonica 116-2
Staff Vine 42-2
Stagonaria verniciflua 36-3
Stag's Horn 180
St. Anthony's Rake 5
Turnip 5

Star Anise 12-2
Bloom 131
Grass 172
Root 172
Rootw 172, 177

Stillingia 151
sebifera 160-3
sylvatica 151

Stillings 151-2

Stinging Nettle 152-3, 153

Physical Nut 147-2
Tree 152-3

Stink Bush 39

Stinking Ash 34
Balm 118
Goose foot 140-2
Nightshade 126
weed 68, 127

St. John's-wort 30

Stramonin 127-3
Stramolium 127
faetidum 127
spinosa 127

Strasburg Turpentine 163-2
Strawberry Tree 160-2

String Bean 51

Strombocarpus pubescens 46-5

Struthin 43-4

Strychnos Nux-Vomica 130-2
tiante 133-2

Stockholm Tar 163-2

Spotted Cranesbill 32

Eye-bright 147

Geranium 32

Poison Parsley 68

Spreading Dog's-bane 132

Squill 175-3

Squills 175-3

Squaw-plant 16

Swamp Dogwood 34, 37, 73
Hellebore 176

Laurel 12

Sassafras 12, 72

Sumach 37

Willow 59

Willow Herb 59

Sweating weed 79

Sweet Almonds 54-2

Bay 12, 145-2

Bed-straw 49-2

Bitter 74

Clover 49

Fern 160-2

Flag 173-2

Gale 160-2

Magnolia 12

Marjoram 116-2

Orange 33-2

Potatoes 123-2

scented Coltsfoot 78-4

scented Sumach 39

scented Water Lily 18

Vernal Grass 49-2

Willow 161

woodruff 49-2

Yam 174-2

Symphoricarpus racemosus 74-2

Sympllorus 169

fetidus 169

Syntrose 81-3

Syringa bacefera 77

vulgaris 136-2

T

Tabacina 128-3

Tabacose 128-5

Tabacum 128

Tacamahaca 162-3

Tacamahac Poplar 161-2

Tall Buttercups 6

Crowfoot 6

Speedwell 114

Tallow Shrub 160
INDEX.

Tamarinds 46-3
{Tamarindus Indica} 46-3
{Tannus communis} 174-2
{Cretica} 174-2
{Tannin} 100-3
{Tann-noymphaein} 18-3
{Tansy} 86
{Tapus barbatus} 110
{Taraxacerin} 95-3
{Taraxacin} 95-3

{Taraxacum} 95
{Dens-Leonis} 95
{officinalis} 95
{vulgare} 95
{Tartar-root} 70
{Taxis baccata} 163-2
{Tea Berry} 102
{Tephrosia apollinea} 46-2
{pupurea} 46-3
{toxicaria} 46-4
{Virginiana} 46-4
{Terebinthina argentinataensis} 163-2
{Canadensis} 163-2
{laricina} 163-2
{Veneta} 163-2
{vulg Harris} 163-2
{Tistudinaria elephantipes} 174-2
{Tetano-Cannabina} 154-4
{Tetterwort} 21, 22
{Tecerium marum} 116-2
{Texas Snake-root} 138-2
{Thapsia gargarica} 62-3
{lymph} 62-3
{Thaspium} 66
{Aureum} 133-2
{Thelotoga} 133-2
{Thelvetia nereifolia} 133-2

{Thilasi Bursa Pastoris} 25
{Thong-bark} 146
{Thorn Apple} 20, 127
{Poppy} 20
{Thorough Wax} 79
{Thoroughwort} 79
{Three-colored Violet} 27
{leaved Ivy} 38
{leaved Nightshade} 175

{Thridace} 96-2
{Thuja} 165
{articulata} 163-2, 165-2
{cupressoides} 165-2
{dolabrata} 165-2
{occidentalis} 165
{orientalis} 165-2

{Thujenin} 165-3
{Thujetin} 165-3
{Thujigenin} 165-3
{Thujin} 165-3
{Thujologin} 165-3
{Thus Americana} 163-2
{Thylax fraxinum} 33
{Thyme} 116-2
{Thyme-leafe} 146
{Thymus vulgaris} 116-2
{Tick-weed} 118
{Tiger Lily} wild 178
{Til} 145-2
{Tillow Tree} 35
{Tilly Seed} 147-2
{Timbo-sipo} 43-2
{Tinker Weed} 74
{Tiporosa cordifolia} 14-2
{Ti-plant} 175-3
{Tithymalus lathyris} 150
{marinus} 148
{Trachelium Americanum} 97
{Tragacanth} 46-4
{Traga involucrata} 147-3
{Tragopon porrifolius} 78-5
{Trailing Arbutus} 101
{Treenail} 50
{Tree of Heaven} 35
{Tree-of-Life} 165
{Tree Primrose} 60
{Stramonium} 125-2
{Trefoil} 34
{Trefoil} 2
{Triecora febrifuga} 33-2
{jasmiafologia} 33-2
{Trifolium} 47
{fibrinum} 129
{officinalis} 49
{paludosum} 129
{pratense} 47
{Trifolium repens} 48
{Trigonella Fumum-Gracum} 46-2
{Trilline} 175-5
{Trillium} 175
{atropurpureum} 175
{erectum} 175
{erectum, var. Album} 175
{erectum, var. atropurpureum} 175
{fattidum} 175
{Trillium Pendulum} 175
{rhomboideum, var. album} 175
{rhomboideum, var. atropurpureum} 175
{Trimethylamine} 155-3
{Trinity Violet} 27
{Triosteum} 74

{Trio. steum majus} 74
{perfoliatum} 74
{Tropine} 126-3
{True Chamomile} 84
{Wild-Yam Root} 174-3
{Trumpet-weed} 78, 96
{Toad Flax} 111
{Root} 10
{Tobacco} 128
{Cuban} 128-2
{Havana} 128-2
{Lataikia} 128-2
{Nonehaw} 128-2
{Persian} 128-2
{Pipe} 105
{Sahirz} 128-2
{Virginiac} 128-2
{Yai} 128-2
{Toddalia aculeata} 33-2
{lanceolata} 33-2
{Toxiconpera balsamum} 46-3
{Perea} 46-3
{Tomato} 124-2, 125-2
{Tongo} 46-2
{Tonka Beans} 46-2, 49-2
{Toothache Tree} 33
{Torenia Asiatica} 110-2
{Tomentil} 32
{Tocxicodendron pubescens} 38
{vulgare} 38-2
{Tocxicodendron pubescens} 38
{Tulip Tree} 12-2
{Tumpu} 110-2
{Tupa Fennulcea} 97-2
{Turbith} 62-2
{Turkey Pea} 46-4
{Turk's Cap Lily} 178
{Turmeric} 22
{root} 9
{Turnip} 23-2
{Turnsole} 147-2
{Turnpente, Austrian} 163-2
{T庸eux} 163-2
{Chian} 36-2
{Damarra} 163-2
{Dombeya} 163-2
{Pacific} 163-2
{Strasburgh} 163-2
{Venice} 163-2
{Tutpinia galbra} 39
{pubescens} 39
{Turtle-head} 113
{Tuissilago Farfar} 78-4
{fragrans} 78-4
{Two-eyed Chequerberry} 77
{Tylophora asthmatica} 135-3
INDEX.

Veratrum album, var. ? 176
eschscholzii 176
luteum 177
nigrum 175-2
officinale 175-2
parviflorum 176
Sabadilla 175-2
Veratrum viride 176
Verbasum 110
Thapsus 110
Veronica anthelmintica 78-4
Veronica japonica 114
Silberica 114
purpurea 114
Virginica 114
Viburnum opulus 74-2
Vicia ervilia 46-4
Faba 46-4
Victoria regia 18-2
Villarsia nymphoides 129-2
ovata 129-2
Vinca minor 133-2
Vinetina 15-3
Viola arvensis 27
bicolor 27
Viola 27
Viola arvensis 27
odora 27-2
pedata 27-3
Violaequitrin 27-3
Viola tricolor 27
tricolor, var. arvensis 27-3
Violet bloom 124
Violia 27-2
Violin 27-2
Violine 27-2
Virginia Stone Crop 57
Virginian Skull Cap 120
Snake-root 138
Swallow-wort 134
Waterleaf 122
Winterberry 106
Viridina 128-4
Visnia Guianensis 30
Vitis hederacea 40
Vitis quinquina 27-3

Water Cress 23-2
Cup 19
Dragon 7
Dropwort 62-2
Hemlock 62-2, 67
Horehound 117
Leaf 122
Lily 18
Nymph 18
Pepper 141
Seeker 58
Shamrock 129
Smartweed 141
Wax Myrtle 160
Way Bread, or bred 107
Western Arbor-vite 165
Hickory 156-2
Whin 46
White Archangel 121
Ash 137
Balsam 89
Baneberry 10
Bay 12
Bean 51
Cedar 165
Clover 48
Cohosh 10
Ginseng 74
Hellebore 175-2
Henbane 125-2
Hickory 157
Jassamine 130-2, 136
Lettuce 94
Man’s Foot 107-2
Melilot 49
Mustard 23
Negro-Yam 174-2
Poison-vine 130-2
Pond Lily 18
Poplar 162
Root 135
Walnut 156
Water Lily 18
Yam 174-2
Whorly-wort 114
Whortleberry 100
Wicke 103
Wickop 59
Wicopy 146
Wild Allspice 145
Cherry Bark 54-2
Chicory 93
Coffee 74
Cotton 134
Cranebill 32
Curcuma 9
Endive 93
Geranium 32
INDEX.

Woad 46-6
 waxen 46
Wolf’s Claw 180
Woodbine 40, 130
Wood Strawberry 55
 waxen 46
Woody Nightshade 124
Worm Grass 131
Wormwood 88
Wynetha 78-4
 Helenoides 78-4

X
Xanthopicrit 15-2
Xanthopuccina 9-2
Xanthorrhiza apifolia 15-3
Xanthoxylen 33-4
Xanthoxylene 33-4
Xanthoxylin 33-4

Xanthoxylum 33
 Clava-Herculis 15-2, 33
 alatum 33-2
 Americanum 33
 Avicennia 33-2
 fraxineum 33
 fraxinifolium 33
 mite 33
 piperita 33-2
 ramiflorum 33
 tricarpum 33
Xoxonitztal 78-4
Xylophia glabra 13-2
 longifolia 13-2

Y
Yam, buck 174-2
 devil’s 174-2
 Indian 174-2
 Japanese 174-2
 prickly 174-2

Z
Yam, sweet 174-2
 white 174-2
 white Negro 174-2
 wild 174
Yarrow 85
Yaw-root 151
Yellow Broom 52
Dock 143
Flax 111
Gentian 129-2
Ginseng 16
Jasmine 130
Jessamine 130
Lady’s Slipper 170
Locust 50
Melilot 49
Mustard 23
Parilla 14
Pile-weed 6
Puccoon 9
root 9
Rosebay 100-2
Yellows 170
Yellow Sweet Clover 49
 Thistle 20
 Umbil 170
 Wild Indigo 52
 Wood 33
Yoloxiltic 78-4
Youth root 29
 Yucca baccata 175-3

Z
Zallhoy 45-2
Zeysoum 78-5
Zizia 66
 aurea 66
Ziziphora pulegioides 118
Zizyphus jujuba 41-2
 lotus 41-2
 anophila 41-2
 vulgaris 41-2
ACIDITY OF STOMACH 164-2
Agues 93-2
" Dumb 119-2
Amaurosis 38-1
Anasarca 45-2, 64-1, 96-1, 111-1
Angina Pectoris 126-2
Anthrax 71-3
Aphthous 28-2
Ascites 96-1
Asthma 3-2, 99-2, 126-2, 127-2, 134-2
" Spasmodic 60-2
Atony, Generative Organs 177-2
Biliary Calculi 95-2
Bilious Colic 78-2, 174-3
" Fever 78-2, 114-2, 130-2, 138-3
Blenorrhoea 100-3
Bone-break Fever 78-2
Brain Disease 171-2
Broken Breasts 49-2
Bronchitis 135-3
Bruises 88-2, 110-2
Burns 112-1, 118-2, 127-2
Caccoeyma 165-2
Calcus 88-1, 100-3, 116-3
Cancerous States 68-2
Catarrh 12-2, 135-3
" Chronic Vesical 100-3, 101-1
Catarrh Pulmonary 92-2
Catarrhal Coughs 110-2
" Fever 79-2
Cephalgia 126-2
Chancr 20-2
Chilblains 3-2
Chlorosis 161-2, 172-2
Cholera 33-3
Cholera Infantum 32-2
" Morbus 174-3
Chordee 126-3
Chorea 11-2, 68-3, 105-2, 110-2
Cold 79-2
Colic 54-2, 59-2
" Flatulent 64-1
Colica Pictorum 126-2
Condyloa 65
Congestion 58-2
Consumption 29-2
Corns 29-2
Corpus 153-2
Coryza 12-2, 141-2
Cough 12-2, 29-2, 107-2, 134-2
" Phthisical 126-2
Cramps Abdominal 86-1
" of Stomach 59-2
Croup 99-2, 126-2, 151-2
Cutaneous Affections 29-2, 65-1
Cynanche 32-2
Cystic Troubles 78-5
Cystitis 100-3, 101-1
D
Debility 10-2
Delirium 127-2
" Tremens 120-2
Dengue 78-2
Diabetes 80-2
" Anaemic 94-2
" Chronic 60-2
" Muco Sanguineus 90-1
Dysentery 25-1, 54-2, 80-2, 89-2, 90-1, 94-2, 107-2, 156-2, 180-2
" Chronic 161-2
Dysmenorrhcea 45-2, 86-1, 141-2, 172-2
Dyspepsia 12-2, 14-2, 116-3, 134-2
" Atonic 84-2, 129-3
" Chronic 72-1
Dyspsenia 110-3, 134-2
Dysuria 3-2, 55-2, 80-2, 100-3
E
Ecchymosis 25-1
Eczeza 9-1
" Capitas 139-2
Elephantiasis 143-2
Engorged Uteri 172-2
Enteritis 141-2
Epilepsy 8-1, 68-3, 105-2, 126-2, 127-2, 170-2
Epistaxis 25-1, 117-2
Emotions 125-3
Erysipelas 68-2, 138-3
" Phlegmonous 71-3
Eye Troubles 115-2
<table>
<thead>
<tr>
<th>FAT</th>
<th>INF</th>
<th>ODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue 70-2, 107-2</td>
<td>Inflammations 58-2</td>
<td>Odontalgia 126-3</td>
</tr>
<tr>
<td>Febris Nervosa 126-2</td>
<td>Inflammation Mucous Membrane 62-4</td>
<td>Old Age 70-2</td>
</tr>
<tr>
<td>Felon 74-2, 139-2, 173-2</td>
<td>Influenza 79-2</td>
<td>Onychia 74-2</td>
</tr>
<tr>
<td>Freckles 29-2</td>
<td>Insect Poison 52-2</td>
<td>Ophthalmia 20-2, 28-2, 45-2</td>
</tr>
<tr>
<td>Gangrenous Ulcers 43-3</td>
<td>Irritation Bladder 60-2</td>
<td>Orchitis 126-3</td>
</tr>
<tr>
<td>Gastralgia 102</td>
<td>" Gastric 60-2</td>
<td>Palsy 38-1, 76-1</td>
</tr>
<tr>
<td>Gastritis 125-2</td>
<td>" Uterine 62-4</td>
<td>Paralysis 38-1</td>
</tr>
<tr>
<td>Glands Enlarged 69-3</td>
<td>Jaundice 68-2, 93-2, 106-2, 111-1, 153-1, 162-2</td>
<td>Pectoral 2-2</td>
</tr>
<tr>
<td>Gleet 62-4, 100-3</td>
<td>Kidneys Torpidity of 19-4</td>
<td>Peri-pneumonia 45-2</td>
</tr>
<tr>
<td>Goitre 153-2</td>
<td>L</td>
<td>Pertussis 60-2, 126-2</td>
</tr>
<tr>
<td>Gonorrhoea 55-2, 62-4, 82-2, 100-3</td>
<td></td>
<td>Pharyngitis 57-2</td>
</tr>
<tr>
<td>Grippe La (see Influenza) Gums Spongy 143-2</td>
<td></td>
<td>Pleurisy 45-2, 61-3, 135-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pneumonia 3-2, 135-3, 136-3, 171-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proctalgia 110-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prolapsus 172-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>" Uteri 164-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psorae 3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psoriasis 139-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pterygium 82-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Putrid Fever 52-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quinsy 89-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remittent Fevers 76-2, 79-2, 129-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renal Troubles 78-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retention of Urine 134-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rheumatic Wry-neck 171-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>" Acute 61-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>" Gonorrhoeal 139-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>" Syphilitic 129-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Satyriasis 96-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scabby Eruptions 143-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scabies 27-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scalds 110-2, 127-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sciatica 3-2, 116-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scofoulis 27-2, 92-2, 129-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scofoulusis 151-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scervy 88-1, 92-2, 153-1, 163-3, 165-2, 180-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin Disorders 95-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Smallpox 19-3, 138-3
Sores 119-2
 " Chronic 107-2
 " Scrofulous 104-2
Sore Eyes 9-2, 99-2, 105-2
 " Mouth 141-2
Spasms Glottidis 128-3
Spasms 99-2
Spleen Enlargement 137-2
Sprains 88-2, 119-2
Strangury 78-5, 80-2
Swellings 86-2
Syphilis 20-2, 28-2, 98-2, 103-2, 143-2, 151-2
 " Surgical 154-3
Tetanus 99-2
 " Surgical 154-3
Tic Douloureux 68-2, 127-2
Tinea Capitis 27-2, 103-2, 176-2
Tonsillitis 57-2
Toothache 3-2, 107-2, 146-2
Tremors 120-2, 170-2
Tuberculosis Pulmonic, 95-2
Tonsils 3-2, 68-2, 86-2, 112-1, 128-3
Tympanitis 33-3, 59-2
Typhoid 12-2, 33-3, 52-2, 106-2, 171-2
Typhus 52-2, 79-2, 138-3
U
Ulceration 9-2, 28-2
 " of Mouth 89-2
Ulcers 27-2, 28-2, 49-2, 112-1, 128-3
 " Chronic 61-3
Urethritis 80-2
Uric Acid 78-5
Urinary Disorders 80-2
Uterine Gastralgia 10-2
Uterine Headache 10-2
 " Troubles 91-2
 " Suppressed 162-2
V
Vaginitis 57-2
Venereal Disorders 76-2
 " Eruptions 92-2
Verrucae 153-2
Vomiting 177-2
W
Wakefulness 120-2
Warts 29-2
Wens 121-2
Whitlow 74-2
Whooping Cough 99-2
Wounds 30-2, 88-2, 119-2
Y
Yellow Fever 79-2
INDEX

OF

FRENCH COMMON NAMES OF PLANTS

A
Absinthe 88
Actee à Grappé 11
Ailante 35
Alétris Farneux 172
Ambrosie 82
Apalachine à Feuilles du Prunier 106
Arbre à Poison 38
Arbre à Suif 160
Argémone 20
Asclepiade à la Soie 134
"Tubereuse 135
Asinnier 13
Aunée 81

B
Bardane 92
Baume de Cheval 119
Bec de Grue 32
Benoite Aquatique 54
Bois de Plomb 76, 146
Bonnet de Pretre 42
Bouillon-Blanc 41
Bourquepine 41
Bourse de Pasteur 25
Busserolle 100

C
Cédré de Virginie 166
Cephalanthme de Amerique 76
Chamomile Romaine 84
Chauvre 154
" du Canada 133
Chasse Diable 30
Chataignier 158
Chêlone 113
Chénoante Anthelmintique 140
Chicorée Sauvage 93
Chionanthre 136
Cique d'Amerique 67
"Ordinaire 68
Cohéche Bleu 16
Commune 26
Cornouile à Feuilles Ronde
"Soyeux 73
Cornuillier à Grandes Fleurs
71
Couleuvrée de Virginie 138
Couronne de St. Jean 87
Cyperipe Jaune 170
Dent de Lion 95
Douce-Amere 124
Drosée à Feuilles Rondes 29
Ellébore Vert 8
Epine-Vinette 15
Erigéron de Canada 80
Eupatorie Perfoliée 79
Euphorbe à Grandes Fleurs 148
"Vomative 149
Euphrasie 115
Fusain 41

G
Genet des Teintuiers 46
Ginseng d'Amerique 70
Glaieul Bleu 173
Glouteron 92
Gout à Dragon 168
"à Trois Feuilles 167
Grande Cique 68
Grande Kalmie 103
H
Haricot 51
Helianthème du Canada 28
Hépatique 2
Herbe a Fievre 79
"a la Ouate 134
"à l'Hirondelle 21
Herbe de Feu 90
"de la Laque 139
"de St. Antoine 59
"de Ste. Christophe Blanc 10
"Parfaite 79
"St. Jean 30
Houbion 155
Hydrastis 9
I
Iguame Indigené 174
Immortelle le Cotonniere 89
Indigo Sauvage 52
"Trèfle 52
J
Jasmin Jaune 130
Jusquiame Noir 126
L
Laéute Blanc 94
"du Canada 96
La Nielle des Blés l'Ivraie 31
L'Anserine Vermifuge 140
La Petite Cique 65
Laurier Benzoin 145
Le Ble Noir 142
"Sarrasin 142
L'Endorme 127
L'Ortie 153
"Blanche 121
Le Fraisier 55
Le Frene Blanc 137
Le Lisseron 123
Le Magnolier Glaume 12
Le Tourne Sol 83
Linaire Commune 111
Lobélie Cardinale 97
"Enflée 99
"Syphilitique 98
Lycope de Virginie 117
Lycopode Soufre Végétal 180
<table>
<thead>
<tr>
<th>M</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marronnier d’Inde 43</td>
<td>Panais Potager 63</td>
<td>Scrophulaire 112</td>
</tr>
<tr>
<td>Mélilot 49</td>
<td>Panicant d’Éau 62</td>
<td>Scutellaire 120</td>
</tr>
<tr>
<td>Ményanthe Trèfle 129</td>
<td>Patience Frisé 143</td>
<td>Sénéçon 91</td>
</tr>
<tr>
<td>Millefeuille 85</td>
<td>Pensée 27</td>
<td>Sérpentaire 138</td>
</tr>
<tr>
<td>Mille-pertus 30</td>
<td>Pied de Lion 94</td>
<td>Sorbil 56</td>
</tr>
<tr>
<td>Mitchella 77</td>
<td>Pissenlit Commune 95</td>
<td>Spigélia de Maryland 131</td>
</tr>
<tr>
<td>Molène 110</td>
<td>Plantain Ordinaire 107</td>
<td>Stillingie 151</td>
</tr>
<tr>
<td>Morelle à Grappes 136</td>
<td>Podophylle 17</td>
<td>Sucrè Baie 152</td>
</tr>
<tr>
<td>“ Noire 125</td>
<td>Polygaléde Virginie 45</td>
<td>Sumac 35</td>
</tr>
<tr>
<td>Mouron 108</td>
<td>Pomme Épineuse 127</td>
<td>“ Vénéneux 38</td>
</tr>
<tr>
<td>Moutarde Blanc 23</td>
<td>Pothos Fétide 169</td>
<td>Sureau du Canada 75</td>
</tr>
<tr>
<td>“ Noire 24</td>
<td>Pouliot d’Amérique 118</td>
<td>T</td>
</tr>
<tr>
<td>N</td>
<td>R</td>
<td>Acre 6</td>
</tr>
<tr>
<td>Nard d’Amérique 69</td>
<td>Raifoot 26</td>
<td>Tabac 128</td>
</tr>
<tr>
<td>Nérpun 14</td>
<td>Raisin d’Ours 100</td>
<td>Tanaisie 86</td>
</tr>
<tr>
<td>Noyer Gris 156</td>
<td>Ranoncule 3, 4</td>
<td>Thé du Canada 102</td>
</tr>
<tr>
<td>O</td>
<td>S</td>
<td>Sabot de Venus Jaune 170</td>
</tr>
<tr>
<td>Onagre 60</td>
<td>Robinié 50</td>
<td>Sanguinaire 22</td>
</tr>
<tr>
<td>Orme de Samaire à Trois Feuilles 34</td>
<td>S</td>
<td>V</td>
</tr>
<tr>
<td>P</td>
<td>Sanguinaire 22</td>
<td>Veratré Vert 176</td>
</tr>
<tr>
<td>Plantain Ordinaire 107</td>
<td>Sabot de Venus Jaune 170</td>
<td>Vernis des Japon 35</td>
</tr>
<tr>
<td>Polygaléde Virginie 45</td>
<td>Sanguinaire 22</td>
<td>Véronique de Virginie 114</td>
</tr>
</tbody>
</table>

INDEX

OF

GERMAN COMMON NAMES OF PLANTS

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackerklee 47</td>
<td>Die Winde 123</td>
<td>Hahnenfuss 4</td>
</tr>
<tr>
<td>Alant 81</td>
<td>Goldenblütiges Harnkraut 104</td>
<td>Hanf 154</td>
</tr>
<tr>
<td>Amerikanische Aralie 69</td>
<td>Drachen Aron 168</td>
<td>Harthau 30</td>
</tr>
<tr>
<td>" Poley 118</td>
<td>Dreilätzteriger Aron 167</td>
<td>Heidekorn 142</td>
</tr>
<tr>
<td>" Scharlachbeere 139</td>
<td>Dreilappige Asimine 13</td>
<td>Helmkrant 120</td>
</tr>
<tr>
<td>" Wasserschierling 67</td>
<td>Dreistein 74</td>
<td>Hexenkrant 30</td>
</tr>
<tr>
<td>" Weissball 76</td>
<td>Durchwachsener Wasserhanf 79</td>
<td>Hexenmehl 180</td>
</tr>
<tr>
<td>" Wurmsamen Gänsefuss 140</td>
<td>Antonskraut 59</td>
<td>Hirtentäschlein 23</td>
</tr>
<tr>
<td></td>
<td>Augentrost 115</td>
<td>Hopfen 155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hopfenhainbuch 159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hühnerdarm 108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hundspetersilie 65</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>I</td>
</tr>
<tr>
<td>Bachsbohne 129</td>
<td>Edelbeere 2</td>
<td>Immerschönhes Ruhkraut 86</td>
</tr>
<tr>
<td>Baptisie 52</td>
<td>Einblütige Monotropa 105</td>
<td></td>
</tr>
<tr>
<td>Bärentraube 100</td>
<td>Erdbeere 55</td>
<td></td>
</tr>
<tr>
<td>Bergthee 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilsenkrant 126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitterklee 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bittersüß 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beifuß 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blauer Cohosch 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blitz Pulver 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blutwurzel 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brechwolfsmilch 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brennnessel 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buchweizen 142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bärlappsamen 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>J</td>
</tr>
<tr>
<td>Canadische 9</td>
<td>Falsche Acacie 50</td>
<td>Johanniskraut 30</td>
</tr>
<tr>
<td>" Berufs Kraut 80</td>
<td>Färbeginster 46</td>
<td>" Blätterige Wolfsmilch 147</td>
</tr>
<tr>
<td>" Collinsonie 119</td>
<td>Fauerkrant 90</td>
<td></td>
</tr>
<tr>
<td>" Edelisonne 164</td>
<td>Fiebergklee 129</td>
<td></td>
</tr>
<tr>
<td>" Hanf 133</td>
<td>Frauenflachs 111</td>
<td></td>
</tr>
<tr>
<td>" Hollunder 75</td>
<td>Freisamkrant 27</td>
<td></td>
</tr>
<tr>
<td>" Lattich 96</td>
<td>Fussblatt 17</td>
<td></td>
</tr>
<tr>
<td>Canadisches Sonnenröschchen 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelone 113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichorie 93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefleckter Storchshnabel 32</td>
<td>Kastanie 158</td>
</tr>
<tr>
<td>Gelber Jasmin 130</td>
<td>Kermesbeere 139</td>
</tr>
<tr>
<td>Gelbfrauenschuh 170</td>
<td>Kleiner Schierling 65</td>
</tr>
<tr>
<td>Gelbwurzel 9</td>
<td>Klette 92</td>
</tr>
<tr>
<td>Gemeine Lobelie 98</td>
<td>Knollige Schwabennwurz 135</td>
</tr>
<tr>
<td>" Rade 31</td>
<td>Knollinger Hahnenfuss 5</td>
</tr>
<tr>
<td>Giftsamach 38</td>
<td>Knopfbusch 76</td>
</tr>
<tr>
<td>Glatte Chelone 113</td>
<td>Knöterich 141</td>
</tr>
<tr>
<td>Goldene Pastinake 66</td>
<td>Königskerze 110</td>
</tr>
<tr>
<td>Goldenes Kreuzkraut 91</td>
<td>Korn Rade 31</td>
</tr>
<tr>
<td>Götterbaum 35</td>
<td>Kraftwurzel 70</td>
</tr>
<tr>
<td>Grindwurzel 144</td>
<td>Krausser Ampfer 143</td>
</tr>
<tr>
<td>Gross Kalmie 103</td>
<td>Kreuzdorn 41</td>
</tr>
<tr>
<td>Grossblütige Cornell 71</td>
<td>Kropfwurz 112</td>
</tr>
<tr>
<td>" Wolfsmilch 148</td>
<td></td>
</tr>
<tr>
<td>Grosser Wegetritt 107</td>
<td></td>
</tr>
<tr>
<td>Grüne Nieswurz 8</td>
<td></td>
</tr>
<tr>
<td>Grüner Germer 176</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebensbaum 165</td>
<td></td>
</tr>
<tr>
<td>Lederholz 146</td>
<td></td>
</tr>
<tr>
<td>Leinkraut 111</td>
<td></td>
</tr>
<tr>
<td>Lobelie 99</td>
<td></td>
</tr>
<tr>
<td>Löwenmaul 111</td>
<td></td>
</tr>
<tr>
<td>Löwenzahn 95</td>
<td></td>
</tr>
</tbody>
</table>
M
Magnolie 12
Mehlige Aletris 172
Melilotenklee 49

N
Nachtkerze 60
Nordamerikanische Spigelie 131

P
Pappel 162
Pastinake 63
Pfaffen-Röhrlein 95
Pfeffermünze 116
Purgierkörner 150
Purpurfarbige Angelica 64
Schierling 68
Wasserhaful 78
Purpur Weide 161

R
Rainfarn 86
Römische Kamillen 84
Rosskastanie 43
Rothe Ceder 166
Rothe Kardinals Blume 97
Rundblättriger Sonnentau 29
Cornel 72

S
Sauerdorn 15
Schachtelhalm 179
Schafgarbe 85
Schafrippe 85
Scharfer Hahnenfuss 3, 6
Schierling 68
Schildblättriger Entenfuss 17
Schlangenwurzel 138
Schminkbohne 51
Schneebaum 136
Schneebirke 136
Schöllkraut 21
Scrophelpflanze 112
Schwalbenwurzel 134
Schwartztanne 163
Schwarzer Nachtschatten 125
Schwarzer Cohosch 11
Schwarzer Senf 24
Seidenfarn 134
Senega Wurzel 45
Sonnenblume 83
Spindelbaum 42
Stachelmohn 20
Stechapfel 127
Steinklee 49
Stiefmütterchen-Kraut 27
Stillingsie 151
Stinkende Drachenwurzel 169
Sumach 36
Sumpf Cornel 73
Sumpf Ringelblume 7
Sumpfnelkenwurzel 54
Tabak 128
Traubenförmiges Christophskraut 11
Traubenkraut 82
Trillium 175

V
Verschiedenfarbige Schwertlilie 117
Virginische Ceder 166
'" Ehrenpreis 114
'" Winterbeere 106
'" Wolfsfuss 117
Vogelbeere 56

W
Wachsbuche 160
Wachsgagle 160
Wallnuss 156
Wassermannstre 62
Wegdorn 41
Wegwurz 93
Weissbrenensang 121
Weisse Esche 137
" Taubnessel 121
Weisser Lattich 94
" Senf 23
" Klee 48
Weisses Christophskraut 10
Wermuth 88
Wilder Rettig 26
" Yam 174
Wintergrün 104
Wolk Kraut 110
Wurn Mehl 180

Z
Zahnweh-holz 33
Zuckerbeere 152
ADDITIONS AND CORRECTIONS.

As might be expected in a work issued in parts, and extending over a long period of time, many inequalities of treatment will be found. The following corrections are some of the more noticeable:

Page 14-2, line 15, for "A. platyphyllum," read C. platyphyllum.
"15-2, "2 from bottom, for "lava," read Clava.
"35-2, "5, for "Simarouba," read Simaruba.
"35-2, "2 from bottom, the same correction.
"41-3, foot-note, for "Rhamnetine," read Rhamnetine.
"46-2, line 6, for "Copiava," read Copaiva.
"46-2, "20, for "Cyticus," read Cytisus.
"46-3, "19, for "augustifolia," read angustifolia.
"46-3, "28, for "Psoralia," read Psoralea.
"49-2, "16, for "Dipterix," read Dipteryx.
"77, "9, for "reeping," read Creeping.
"85-2, "24, for "Etsupra," read Et supra.
"110-2, "13 from bottom, for "emale," read female.
"128-2, "12 from bottom, for "chinensis," read Chinensis.
"129-2, "14, for "Centuary," read Centaury.
"133, last foot-note is now unnecessary.
"141, line 3 from bottom, for "moorcroftianum," read Moorcroftianum.
"134-3, Description of Plate, for "A cluster of Follicles," read A follicle; and add, 5. A section of the root.
"147-2, line 17, for "cyparissias," read Cyparissias.
"160-3, "19, for "cerefera," read cerifera.
"164-2, foot-note, for "Ut supra," read Et supra.

Plate 66 should be titled Thaspium aureum.
"107, the spike of flowers is not broad enough; it should have been more fusiform. As it now is, the plate much more resembles Plantago Rugelii than P. major.
"158, should be titled Castanea vesca, var. Americana.